
XcalableMP
⟨ex-scalable-em-p⟩

Language Specification

Version 1.4

XcalableMP Specification Working Group

November, 2018

Copyright c⃝2008-2018 XcalableMP Specification Working Group. Permission to copy with-
out fee all or part of this material is granted, provided the XcalableMP Specification Working
Group copyright notice and the title of this document are displayed. Notice is given that copying
requires the explicit permission of the XcalableMP Specification Working Group.

2

History

Version 1.4: November, 2018

• 4.1.2 Combined Directive

• F DRAFT: Tasklet of upcoming XcalableMP 2.0

Version 1.3: August, 2017

• 2.8.2 Node Terminology

• 2.8.6 Local-view Terminology

• 3.1 Array Section Notation

• 3.2 Array assignment statements in C

• 3.5 Dynamic Allocation of Global Data in C

• 4.2 nodes Directive

• 4.3.1 template Directive

• 4.3.4 align Directive

• 4.4.3 loop Construct

• 4.5.1 reflect Construct

• 4.5.6 wait async Construct

• 4.5.8 reduce shadow Construct

• 5.7 Coarrays in XcalableMP C

• 5.8 Directives for the Local-view Programming

• 7.2.2 xmpc all node num

• 7.2.5 xmpc node num

• 7.2.6 xmpc this image

• 7.2.8 xmp num images

• 7.3 Execution Control Functions

• 7.5.1 xmp malloc

• 7.6.4 xmp nodes attr

• B.2.1 xmp array gtol

• B.2.2 xmp array lsize

• B.2.4 xmp array lda

• 7.9.1 xmp scatter

• 7.9.3 xmp pack

• 7.9.4 xmp unpack

• C Memory-layout Model

3

Version 1.2.1: November, 2014 Corrections and clarifications to Version 1.2.

• 4.3.4 align Directive

• 4.4.3 loop Directive

• 5.7.1 [C] Declarations of Coarrays

• 5.8.1 [F] local alias Directive

• 3.1 Array Section Notation

• 3.2 Array Assignment Statement

Version 1.2: November 20, 2013

Version 1.1: November 13, 2012

Version 1.0: November 14, 2011

4

Contents

1 Introduction 1

1.1 Features of XcalableMP . 1

1.2 Scope . 2

1.3 Organization of this Document . 2

1.4 Changes to Version 1.4 from Version 1.3 . 2

1.5 Changes to Version 1.3 from Version 1.2.1 . 2

1.6 Changes to Version 1.1 from Version 1.2 . 3

2 Overview of the XcalableMP Model and Language 5

2.1 Hardware Model . 5

2.2 Execution Model . 5

2.3 Data Model . 6

2.4 Global-view Programming Model . 6

2.5 Local-view Programming Model . 7

2.6 Interactions between Global View and Local View 8

2.7 Base Languages . 8

2.8 Glossary . 9

2.8.1 Language Terminology . 9

2.8.2 Node Terminology . 11

2.8.3 Data Terminology . 12

2.8.4 Work Terminology . 12

2.8.5 Communication and Synchronization Terminology 12

2.8.6 Local-view Terminology . 13

3 Base Language Extensions in XcalableMP C 15

3.1 Array Section Notation . 15

3.2 Array Assignment Statement . 16

3.3 Built-in Functions for Array Section . 17

3.4 Pointer to Global Data . 17

3.4.1 Name of Global Array . 17

3.4.2 Address-of Operator . 17

3.5 Dynamic Allocation of Global Data . 17

3.6 Descriptor-of Operator . 18

4 Directives 19

4.1 Directive Format . 19

4.1.1 General Rule . 19

4.1.2 Combined Directive . 21

4.2 nodes Directive . 22

4.2.1 Node Reference . 23

i

4.3 Template and Data Mapping Directives . 24

4.3.1 template Directive . 24

4.3.2 Template Reference . 25

4.3.3 distribute Directive . 26

4.3.4 align Directive . 29

4.3.5 shadow Directive . 31

4.3.6 template fix Construct . 33

4.4 Work Mapping Construct . 35

4.4.1 task Construct . 35

4.4.2 tasks Construct . 36

4.4.3 loop Construct . 38

4.4.4 array Construct . 47

4.5 Global-view Communication and Synchronization Constructs 48

4.5.1 reflect Construct . 48

4.5.2 gmove Construct . 50

4.5.3 barrier Construct . 52

4.5.4 reduction Construct . 52

4.5.5 bcast Construct . 55

4.5.6 wait async Construct . 56

4.5.7 async Clause . 57

4.5.8 reduce shadow Construct . 57

5 Support for the Local-view Programming 61

5.1 Rules Determining Image Index . 61

5.1.1 Primary Image Index . 61

5.1.2 Image Index Determined by a task Directive 62

5.1.3 Current Image Index . 62

5.1.4 Image Index Determined by a Non-primary Node Array 62

5.1.5 Image Index Determined by an Equivalenced Node Array 62

5.1.6 On-node Image Index . 63

5.2 Basic Concepts . 63

5.2.1 Examples . 63

5.3 coarray Directive . 64

5.3.1 Purpose and Form of the coarray Directive 64

5.3.2 An Example of the coarray Directive . 65

5.4 image Directive . 66

5.4.1 Purpose and Form of the image Directive 66

5.4.2 An Example of the image Directive . 66

5.5 Image Index Translation Intrinsic Procedures . 67

5.5.1 Translation to the Primary Image Index 67

5.5.2 Translation to the Current Image Index 68

5.6 Examples of Communication between Tasks . 68

5.7 [C] Coarrays in XcalableMP C . 71

5.7.1 [C] Declaration of Coarrays . 71

5.7.2 [C] Reference of Coarrays . 72

5.7.3 [C] Synchronization of Coarrays . 72

5.8 Directives for the Local-view Programming . 73

5.8.1 [F] local alias Directive . 73

5.8.2 post Construct . 76

5.8.3 wait Construct . 77

ii

5.8.4 [C] lock/unlock Construct . 78

6 Procedure Interfaces 81

6.1 General Rule . 81

6.2 Argument Passing Mechanism in XcalableMP Fortran 81

6.2.1 Sequence Association of Global Data . 82

6.2.2 Descriptor Association of Global Data . 85

6.3 Argument-Passing Mechanism in XcalableMP C 88

7 Intrinsic and Library Procedures 93

7.1 Intrinsic Functions . 93

7.1.1 xmp desc of . 93

7.2 System Inquiry Functions . 93

7.2.1 xmp all node num . 94

7.2.2 [C] xmpc all node num . 94

7.2.3 xmp all num nodes . 94

7.2.4 xmp node num . 95

7.2.5 [C] xmpc node num . 95

7.2.6 [C] xmpc this image . 95

7.2.7 xmp num nodes . 95

7.2.8 xmp num images . 96

7.2.9 xmp wtime . 96

7.2.10 xmp wtick . 96

7.3 [C] Execution Control Functions . 97

7.3.1 xmp exit . 97

7.4 Synchronization Functions . 97

7.4.1 xmp test async . 97

7.5 Memory Allocation Functions . 97

7.5.1 [C] xmp malloc . 97

7.6 Mapping Inquiry Functions . 98

7.6.1 xmp nodes ndims . 98

7.6.2 xmp nodes index . 98

7.6.3 xmp nodes size . 99

7.6.4 xmp nodes attr . 99

7.6.5 xmp nodes equiv . 100

7.6.6 xmp template fixed . 100

7.6.7 xmp template ndims . 101

7.6.8 xmp template lbound . 101

7.6.9 xmp template ubound . 102

7.6.10 xmp dist format . 102

7.6.11 xmp dist blocksize . 103

7.6.12 xmp dist gblockmap . 103

7.6.13 xmp dist nodes . 104

7.6.14 xmp dist axis . 104

7.6.15 xmp align axis . 105

7.6.16 xmp align offset . 105

7.6.17 xmp align replicated . 106

7.6.18 xmp align template . 106

7.6.19 xmp array ndims . 106

7.6.20 xmp array lshadow . 107

iii

7.6.21 xmp array ushadow . 107

7.6.22 xmp array lbound . 108

7.6.23 xmp array ubound . 108

7.7 [F] Array Intrinsic Functions of the Base Language 109

7.8 [C] Built-in Elemental Functions . 109

7.9 Intrinsic/Built-in Transformational Procedures 109

7.9.1 xmp scatter . 110

7.9.2 xmp gather . 111

7.9.3 xmp pack . 111

7.9.4 xmp unpack . 112

7.9.5 xmp transpose . 112

7.9.6 xmp matmul . 112

7.9.7 xmp sort up . 113

7.9.8 xmp sort down . 113

8 OpenMP in XcalableMP Programs 115

Bibliography 117

A Programming Interface for MPI 119

A.1 Call MPI functions from an XcalableMP program 119

A.1.1 xmp get mpi comm . 119

A.1.2 xmp init mpi . 119

A.1.3 xmp finalize mpi . 120

A.2 Call XcalableMP functions from an MPI program 121

A.2.1 xmp init . 121

A.2.2 xmp finalize . 121

B Interface to Numerical Libraries 125

B.1 Interface Design . 125

B.2 Extended Mapping Inquiry Functions . 125

B.2.1 xmp array gtol . 126

B.2.2 xmp array lsize . 126

B.2.3 xmp array laddr . 127

B.2.4 xmp array lda . 127

B.3 Example . 127

C Memory-layout Model 131

D XcalableMP I/O 133

D.1 Categorization of I/O . 133

D.1.1 Local I/O . 133

D.1.2 Master I/O[F] . 133

D.1.3 Global I/O . 133

D.2 File Connection . 134

D.2.1 File Connection in Local I/O . 135

D.2.2 [F] File Connection in Master I/O . 135

D.2.3 File Connection in Global I/O . 135

D.3 Master I/O . 135

D.3.1 master io Construct . 136

D.4 [F] Global I/O . 137

iv

D.4.1 Global I/O File Operation . 138
D.4.2 Collective Global I/O Statement . 140
D.4.3 Atomic Global I/O Statement . 140
D.4.4 Direct Global I/O Statement . 141

D.5 [C] Global I/O Library . 141
D.5.1 Global I/O File Operation . 144
D.5.2 Collective Global I/O Functions . 146
D.5.3 Atomic Global I/O Functions . 148
D.5.4 Direct Global I/O Functions . 149

E Memory Consistency Model 151
E.1 Execution Traces . 151

E.1.1 Common Constraints . 152
E.1.2 Constraints for Synchronous Communications 152
E.1.3 Constraints for Asynchronous Communications 152

F DRAFT: Tasklet of upcoming XcalableMP 2.0 157
F.1 XcalableMP Extended Execution Model . 157
F.2 Glossary . 157

F.2.1 Node Terminology . 157
F.2.2 Thread Terminology . 157
F.2.3 Tasklet Terminology . 157

F.3 Directives . 158
F.3.1 Tasklet Constructs . 158
F.3.2 Tasklet Scheduling . 166
F.3.3 Communication Tasklet Constructs . 166

G Sample Programs 171

v

List of Figures

2.1 Hardware model. 5
2.2 Parallelization using the global-view programming model. 7
2.3 Local-view programming model. 8
2.4 Global view and local view. 9

4.1 Example showing shadow of a two-dimensional array. 33
4.2 Example of periodic shadow reflection. 49

6.1 Sequence association with a global dummy argument. 83
6.2 Sequence association with a local dummy argument. 84
6.3 Sequence association of a section of a global data object as an actual argument

with a local dummy argument. 85
6.4 Sequence association of an element of a global data object as an actual argument

with a local dummy argument. 86
6.5 Sequence association with a global dummy argument that has a full shadow. . . 86
6.6 Descriptor association with a global dummy argument. 88
6.7 Descriptor association with a local dummy argument. 89
6.8 Passing to a global dummy argument. 90
6.9 Passing to a local dummy argument. 91
6.10 Passing an element of a global data object as an actual argument to a local dummy

argument. 91

B.1 Invocation of a library routine using an interface procedure. 125

C.1 Example of memory layout in the Omni XcalableMP compiler. 132

E.1 Constraints that are required by the XcalableMP memory consistency model. . . 152

vi

List of Tables

7.1 Built-in elemental functions in XcalableMP C . 110

D.1 Global I/O. 134
D.2 Operations for I/O. 137

vii

Acknowledgment

The XcalableMP specification is designed by the XcalableMP Specification Working Group,
which consists of the following members from academia, research laboratories, and industries.

• Tatsuya Abe . Chiba Institute of Technology

• Tokuro Anzaki . Hitachi

• Taisuke Boku . University of Tsukuba

• Toshio Endo . TITECH

• Yoshinari Fukui . JAMSTEC

• Yasuharu Hayashi . NEC

• Atsushi Hori . RIKEN

• Kohichiro Hotta . Fujitsu

• Hidetoshi Iwashita . Fujitsu

• Susumu Komae . AXE

• Atsushi Kubota . Hiroshima City University

• Jinpil Lee . RIKEN

• Toshiyuki Maeda . Chiba Institute of Technology

• Motohiko Matsuda . RIKEN

• Yuichi Matsuo . JAXA

• Kazuo Minami . RIKEN

• Shoji Morita . AXE

• Hitoshi Murai . RIKEN

• Kengo Nakajima . University of Tokyo

• Takashi Nakamura . JAXA

• Tomotake Nakamura . Fujitsu

• Mamoru Nakano . CRAY

• Masahiro Nakao . RIKEN

• Takeshi Nanri . Kyushu University

• Kiyoshi Negishi . Hitachi

• Satoshi Ohshima . Kyushu University

• Yasuo Okabe . Kyoto University

• Hitoshi Sakagami . NIFS

• Tomoko Sakari . Fujitsu

• Shoich Sakon . NEC

• Mitsuhisa Sato . RIKEN

• Taizo Shimizu . PC Cluster Consortium

• Takenori Shimosaka . Hitachi

• Yoshihisa Shizawa . RIST

viii

• Shozo Takeoka . AXE

• Hitoshi Uehara . JAMSTEC

• Eiji Yamanaka . Fujitsu

• Masahiro Yasugi . Kyushu Institute of Technology

• Mitsuo Yokokawa . Kobe University

This work was supported by “Seamless and Highly-productive Parallel Programming Envi-
ronment for High-performance Computing” project funded by Ministry of Education, Culture,
Sports, Science and Technology, Japan, and is supported by PC Cluster Consortium.

ix

x

Chapter 11

Introduction2

This document defines the XcalableMP specification, which is a directive-based language ex-3

tension of Fortran and C for scalable and performance-aware parallel programming. The spec-4

ification includes a collection of compiler directives and intrinsic and library procedures, and5

provides a model of parallel programming for distributed memory multiprocessor systems.6

1.1 Features of XcalableMP7

The features of XcalableMP are summarized as follows:8

• XcalableMP supports typical parallelization based on the data-parallel paradigm and work9

mapping under the “global-view” programming model, and it enables the parallelization10

of the original sequential code using minimal modification with simple directives such as11

OpenMP [1]. Many ideas on “global-view” programming are inherited from High Perfor-12

mance Fortran (HPF) [2].13

• The important design principle of XcalableMP is “performance-awareness.” All actions14

related to communication and synchronization are taken by directives (and coarray fea-15

tures), which is different from automatic parallelizing compilers. The user should be aware16

of the effect of the XcalableMP directives in the execution model for distributed-memory17

architecture.18

• XcalableMP also includes features from Partitioned Global Address Space (PGAS) lan-19

guages, such as coarray of the Fortran 2008 standard, for “local-view” programming.20

• An extension of existing base languages with directives is useful to reduce code-rewriting21

and education costs. The XcalableMP language specification is defined as an extension to22

the Fortran and C base languages.23

• For flexibility and extensibility, the execution model enables us to combine XcalableMP24

with explicit Message Passing Interface (MPI) [3] coding for more complicated and tuned25

parallel codes and libraries.26

• For multi-core and SMP clusters, OpenMP directives can be combined into XcalableMP27

for thread programming inside each node as a hybrid programming model.28

XcalableMP is being designed based on experiences gained during the development of HPF,29

HPF/JA [4], Fujitsu XPF (VPP FORTRAN) [5, 6], and OpenMPD [7].30

1

2 CHAPTER 1. INTRODUCTION

1.2 Scope 1

The XcalableMP specification covers only user-directed parallelization, where the user explicitly 2

specifies the behavior of the compiler and the runtime system in order to execute the pro- 3

gram in parallel in a distributed-memory system. XcalableMP-compliant implementations are 4

not required to automatically distribute data, detect parallelism, parallelize loops, or generate 5

communications and synchronizations. 6

1.3 Organization of this Document 7

The remainder of this document is structured as follows: 8

• Chapter 2: Overview of the XcalableMP Model and Language 9

• Chapter 3: Base Language Extensions in XcalableMP C 10

• Chapter 4: Directives 11

• Chapter 5: Support for Local-view Programming 12

• Chapter 6: Procedure Interface 13

• Chapter 7: Intrinsic and Library Procedures 14

• Chapter 8: OpenMP in XcalableMP Programs 15

In addition, the following appendices are included in this document as proposals. 16

• Appendix A: Programming Interface for MPI 17

• Appendix B: Interface to Numerical Libraries 18

• Appendix C: Memory-layout Model 19

• Appendix D: XcalableMP I/O 20

• Appendix E: Memory Consistency Model 21

• Appendix F: DRAFT: Tasklet of upcoming XcalableMP 2.0 22

1.4 Changes to Version 1.4 from Version 1.3 23

• Combined directives in XcalableMP C are allowed. 24

• Add an appendix about the tasklet featues of upcoming XcalableMP 2.0. 25

1.5 Changes to Version 1.3 from Version 1.2.1 26

• In XcalableMP C, a square bracket is available in nodes-decl, nodes-ref, template-ref, and 27

template-decl. 28

• Add the orthogonal clause to the reflect directive in Section 4.5.1. 29

• Add xmpc all node num() in Section 7.2.2. 30

1.6. CHANGES TO VERSION 1.1 FROM VERSION 1.2 3

• Add xmpc node num() in Section 7.2.5.1

• Add xmpc this image() in Section 7.2.6.2

• Add xmp num images() in Section 7.2.8.3

• Modify xmp array gtol() in Section B.2.1.4

• Change xmp array lsize() not to include shadow object in Section B.2.2.5

• Create xmp array lda() from xmp array lead dim() in Section B.2.4.6

• In XcalableMP C, the dynamic allocataion of multi-dimensional global data is allowed.7

• A restriction on the align directive is added.8

• The expand and margin clauses of the loop construct are added.9

• The meaning of a reduction-kind “-” in the reduction clause of the loop construct is10

changed.11

• The treatment for async-id not associated with any asynchronous communication is spec-12

ified.13

• The reduce shadow construct is added.14

• The description of the local alias directive is modified.15

• The xmp exit library function is added.16

• The specifications of xmp scatter, xmp pack, and xmp unpack are modified.17

• The memory consistency model of XcalableMP is discussed in the appendix.18

1.6 Changes to Version 1.1 from Version 1.219

• The position of align directives for dummy arguments in XcalableMP C is specified.20

• It is specified that aligned arrays cannot be initialized.21

• The interpretation of a reduction clause of the loop directive is corrected.22

• The syntax for declaring coarrays is changed.23

• An assumed-shape array can be the target of the local alias directive.24

• The syntax and the semantics of the array section notation in XcalableMP C is modified.25

• The syntax of the array assignment statement in XcalableMP C is extended.26

Chapter 21

Overview of the XcalableMP Model2

and Language3

2.1 Hardware Model4

The target of XcalableMP is distributed-memory multicomputers (Figure 2.1). Each computa-5

tion node, which may contain several cores, has its own local memory (shared by the cores, if6

any), and is connected with the others via an interconnection network. Each node can access7

its local memory directly and remote memory (the memory of another node) indirectly (i.e.,8

through inter-node communication). However, it is assumed that accessing remote memory is9

much slower than accessing local memory.10

Figure 2.1: Hardware model.

2.2 Execution Model11

An XcalableMP program execution is based on the Single Program Multiple Data (SPMD)12

model, where each node starts execution from the same main routine, and continues to exe-13

cute the same code independently (i.e., asynchronously), which is referred to as the replicated14

execution, until it encounters an XcalableMP construct.15

5

6 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

A set of nodes that executes a procedure, statement, loop, a block, etc. is referred to 1

as its executing node set, and is determined by the innermost task, loop, or array directive 2

surrounding it dynamically, or at runtime. The current executing node set is an executing node 3

set of the current context, which is managed by the XcalableMP runtime system on each node. 4

The current executing node set at the beginning of the program execution, or entire node set, 5

is a node set that contains all the available nodes, which can be specified in an implementation- 6

defined way (e.g., through a command-line option). 7

When a node encounters at runtime either a loop, array, or task construct, and is contained 8

by the node set specified by the on clause of the directive, it updates the current executing node 9

set with the specified one and executes the body of the construct, after which it resumes the 10

last executing node set and proceeds to execute the subsequent statements. 11

In particular, when a node in the current executing node set encounters a loop or an array 12

construct, it executes the loop or the array assignment in parallel with other nodes, so that 13

each iteration of the loop or element of the assignment is independently executed by the node 14

in which a specified data element resides. 15

When a node encounters a synchronization or a communication directive, synchronization or 16

communication occurs between it and other nodes. That is, such global constructs are performed 17

collectively by the current executing nodes. Note that neither synchronization nor communica- 18

tion occurs unless these constructs are being specified. 19

2.3 Data Model 20

There are two classes of data in XcalableMP: global data and local data. Data declared in an 21

XcalableMP program are local by default. 22

Global data are distributed onto the executing node set by the align directive (see section 23

4.3.4). Each fragment of distributed global data is allocated in the local memory of a node in 24

the executing node set. 25

Local data comprises all data that are not global. They are replicated within the local 26

memory of each of the executing nodes. 27

A node can access directly only local data and sections of global data that reside in its local 28

memory. To access data in remote memory, explicit communication must be specified in ways 29

such as global communication constructs and coarray assignments. 30

In particular, in XcalableMP Fortran, for common blocks that include any global variables, 31

it is implementation-defined what storage sequences they occupy and how storage association is 32

defined between two of them. 33

2.4 Global-view Programming Model 34

The global-view programming model is useful when, starting from a sequential version of a pro- 35

gram, the programmer parallelizes it in data-parallel style by adding directives with minimum 36

modification. In the global-view programming model, the programmer describes the distribu- 37

tion of data among nodes using the data distribution directives. The loop construct assigns 38

each iteration of a loop to the node at which the computed data is located. The global-view 39

communication directives are used to synchronize nodes, maintain the consistency of shadow 40

areas, and move sections of distributed data globally. Note that the programmer must specify 41

explicitly communications to make all data references in the program local, and this is done 42

using appropriate directives. 43

In many cases, the XcalableMP program according to the global-view programming model 44

is based on a sequential program, and it can produce the same results, regardless of the number 45

2.5. LOCAL-VIEW PROGRAMMING MODEL 7

of nodes (Figure 2.2).1

There are three groups of directives for the global-view programming model. Because these2

directives are ignored as a comment by the compilers of base languages (Fortran and C), an3

XcalableMP program can be compiled by them to ensure that they run properly.4

Data Mapping5

Specifies the data distribution and mapping to nodes (partially inherited from HPF).6

Work Mapping (Parallelization)7

Assigns a work to a node set. The loop construct maps each iteration of a loop to nodes owning8

a specific data elements. The task construct defines a set amount of work as a task, and assigns9

it to a specific node set.10

Communication and Synchronization11

Specifies how to communicate and synchronize with the other compute nodes. In XcalableMP,12

inter-node communication must be explicitly specified by the programmer. The compiler guar-13

antees that no communication occurs unless it is explicitly specified by the programmer.14

Figure 2.2: Parallelization using the global-view programming model.

2.5 Local-view Programming Model15

The local-view programming model is suitable for programs that explicitly describe an algorithm16

and a remote data reference that are to be executed by each node (Figure 2.3).17

For the local-view programming model, some language extensions and directives are provided.18

The coarray notation, which is imported from Fortran 2008, is one such extension, and can be19

8 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

used to specify which replica of a local data is to be accessed. For example, the expression of 1

A(i)[N] is used to access an array element of A(i) located on the node N. If the access is a 2

reference, then a one-sided communication to get the value from the remote memory (i.e., the 3

get operation) is issued by the executing node. If the access is a definition, then a one-sided 4

communication to put a value to the remote memory (i.e., the put operation) is issued by the 5

executing node. 6

Figure 2.3: Local-view programming model.

2.6 Interactions between Global View and Local View 7

In the global view, nodes are used to distribute data and works. In the local view, nodes are used 8

to address data in the coarray notation. In application programs, programmers should choose 9

an appropriate data model according to the structure of the program. Figure 2.4 illustrates the 10

global view and the local view of data. 11

Data may have both a global view and a local view, and can be accessed from either. 12

XcalableMP provides some directives to give the local name (alias) to the global data declared 13

in the global-view programming model to enable them to also be accessed in the local-view 14

programming model. This feature is useful to optimize a certain part of the program by using 15

explicit remote data access in the local-view programming model. 16

2.7 Base Languages 17

The XcalableMP language specification is defined based on Fortran and C as the base languages. 18

More specifically, the base language of XcalableMP Fortran is Fortran 90 or later, and that of 19

XcalableMP C is ISO C90 (ANSI C89) or later. 20

2.8. GLOSSARY 9

G(80, 1:25)

!$xmp nodes P(4)
!$xmp template T(100)
!$xmp distribute T(block) onto P

real G(80, 100) ! global variable
!$xmp align G(*, i) with T(i)

real L(50, 40) ! local variable (default)

Global name space (virtual)

L(50,40)

G(80, 100)

G(80, 26:50)

L(50,40)

G(80, 51:75)

L(50,40)

G(80, 76:100)

L(50,40)

node P(1) node P(2) node P(3) node P(4)

Data allocation

Figure 2.4: Global view and local view.

2.8 Glossary1

2.8.1 Language Terminology2

base language A programming language that serves as the foundation of the Xcal-3

ableMP specification.4

base program A program written in a base language.5

XcalableMP
Fortran The XcalableMP specification for a base language Fortran, abbreviated6

as XMP/F.7

XcalableMP C The XcalableMP specification for a base language C, abbreviated as8

XMP/C.9

structured block For C, an executable statement, possibly compound, with a single10

entry at the top and a single exit at the bottom, or an XcalableMP11

construct. For Fortran, a block of executable statements with a single12

entry at the top and a single exit at the bottom, or an XcalableMP13

construct.14

procedure A generic term used to refer to “procedure” (including subroutine and15

function) in XcalableMP Fortran and “function” in XcalableMP C.16

directive In XcalableMP Fortran, a comment, and in XcalableMP C, a #pragma,17

that specifies XcalableMP program behavior.18

10 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

declarative
directive An XcalableMP directive that may only be placed in a declarative 1

context. A declarative directive has no associated executable user 2

code; instead, it has one or more associated user declarations. 3

executable
directive An XcalableMP directive that is not declarative; it may be placed in 4

an executable context. 5

construct An XcalableMP executable directive (and for Fortran, the paired end 6

directive, if any) and the associated statement, loop, or structured 7

block, if any. 8

global construct A construct that is executed collectively and synchronously by every 9

node in the current executing node set. Global constructs are further 10

classified into two groups of global communication constructs, such as 11

gmove and barrier, which specify communication or synchronization, 12

and work mapping constructs, such as loop, array, and tasks, which 13

specify parallelization of loops, array assignments, or tasks. 14

template A dummy array that represents an index space to be distributed onto 15

a node set, which serves as the “template” of parallelization in Xcal- 16

ableMP and can be considered to represent a set of, for example, grid 17

points in the grid method and particles in the particle method. A tem- 18

plate is used in an XcalableMP program to specify the data and work 19

mapping. Note that the lower bound of each dimension of a template 20

is one in both XcalableMP Fortran and XcalableMP C. 21

data mapping Allocating elements of an array to nodes in a node set by specifying 22

with the align directive that the array is aligned with a distributed 23

template. 24

work mapping Assigning each of the iterations of a loop, the elements of an array 25

assignment, or the tasks to nodes in a node set. Such work mapping is 26

specified by aligning it with a template or distributing it onto a node 27

set. 28

global A data or a work is global if and only if there are one or more replicated 29

instances of it, each of which is shared by the executing nodes. 30

local A data or a work is local if and only if there is a replicated instance of 31

it on each of the executing nodes. 32

global-view
model A programming or parallelization model on which parallel programs 33

are written by specifying how to map global data and works onto 34

nodes. 35

local-view model A programming or parallelization model on which parallel programs 36

are written by specifying how each node owns local data and performs 37

local works. 38

2.8. GLOSSARY 11

2.8.2 Node Terminology1

node An execution entity managed by the XcalableMP runtime system,2

which has its own memory and can communicate with other nodes.3

A node can execute one or more threads concurrently.4

node set A totally ordered set of nodes.5

entire node set A node set that contains all of the nodes participating in the exe-6

cution of an XcalableMP program. It is the current executing node7

set specified explicitly or implicitly at the beginning of the program8

execution.9

executing node
set A node set that contains all of the nodes participating in the execution10

of a procedure, statement, construct, etc. of an XcalableMP program11

is called its executing node set. In this document, this term is used to12

represent the current executing node set unless it is ambiguous. The13

executing node set at the beginning of the program execution is the14

entire node set.15

current
executing node

set An executing node set of the current context, which is managed by the16

XcalableMP runtime system. The current executing node set can be17

modified by the task, array, or loop constructs.18

executing node A node in the executing node set.19

node array An XcalableMP entity of the same form as a Fortran array that rep-20

resents a node set in XcalableMP programs. Each element of a node21

array represents a node in the corresponding node set. A node array22

is declared by the nodes directive. Note that the lower bound of each23

dimension of a node array is one in both XcalableMP Fortran and24

XcalableMP C.25

entire node
array A node array corresponding to the entire node set. An entire node26

array can be declared by a NODES directive without “=node-ref”.27

executing node
array A node array corresponding to the executing node set. An execut-28

ing node array corresponding to the procedure can be declared by a29

NODES directive with the node reference “*”.30

parent node set The parent node set of a node set is the last executing node set, which31

encountered the innermost task, loop, or array construct that is be-32

ing executed.33

node number A unique number assigned to each node in a node set, which starts34

from one and corresponds to its position within the node set that is35

totally ordered.36

12 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

2.8.3 Data Terminology 1

variable A named data storage block whose value can be defined and redefined 2

during the execution of a program. Note that variables include array 3

sections. 4

global data An array that is aligned with a template. Elements of a global data 5

object are distributed onto nodes according to the distribution of the 6

template. As a result, each node owns a part of the global data (called 7

a local section), and can access it directly, but cannot access those on 8

the other nodes. 9

local data Data that are not global. Each node owns a replica of a local data 10

object, and can access it directly, but cannot access those on the other 11

nodes. Note that the replicas of a local data object do not always have 12

the same value. 13

replicated data Data whose storage is allocated on multiple nodes. A replicated data 14

is either a local data object or a global data object replicated by an 15

align directive. 16

distribution Assigning each element of a template to nodes in a node set in a 17

specified manner. In a broad sense, it refers to assigning each element 18

of an array, loop, etc. 19

alignment Associating each element of an array, loop, etc. with an element of 20

the specified template. An element of the aligned array, loop, etc. is 21

necessarily mapped to the same node as its associated element of the 22

template. 23

local section A section of a global data object that is allocated as an array on each 24

node at runtime. The local section of a global data object includes its 25

shadow objects. 26

shadow An additional area of the local section of a distributed array, which is 27

used to keep elements to be moved in from neighboring nodes. 28

2.8.4 Work Terminology 29

task A specific instance of executable codes that is defined by the task 30

construct and executed by a node set specified by its on clause. 31

2.8.5 Communication and Synchronization Terminology 32

communication The movement of data between nodes. Communication in XcalableMP 33

occurs only when the programmer instructs it explicitly using a global 34

communication construct or a coarray reference. 35

reduction A procedure involving combining variables from each node in a speci- 36

fied manner and returning the result value. A reduction always involves 37

communication. A reduction is specified by either the on clause of the 38

loop construct or the reduction construct. 39

2.8. GLOSSARY 13

synchronization Synchronization is a mechanism to ensure that multiple nodes do not1

execute specific portions of a program at the same time. Synchro-2

nization between any number of nodes is specified by the barrier3

construct, and that between two nodes by the post and wait con-4

structs.5

asynchronous
communication Communication that does not block, and which returns before it is6

complete. Thus, statements that follow it can overtake it. An asyn-7

chronous communication is specified by the async clause of global8

communication constructs or the async directive for a coarray refer-9

ence.10

2.8.6 Local-view Terminology11

local alias An alias to the local section of a global data object, that is, a dis-12

tributed array. A local alias can be used in XcalableMP programs in13

the same way as normal local data.14

image An instance of an XcalableMP program corresponding to a respective15

node.16

image set A totally ordered set of images.17

image index An integer value that identifies an image in an image set, whose range18

is from one to the size of the image set.19

entire image set The image set corresponding to the entire node set one to one in turn.20

executing image
set An image set corresponding to the executing node set one to one in21

turn.22

The executing image set at the beginning of the program execution23

comprises the entire image set.24

allocation image
set An image set on which the coarray data object is allocated.25

The allocation image set for a non-allocatable [F] or a static [C] coar-26

ray variable comprises the entire image set. Otherwise, the allocation27

image set for an allocatable [F] or an auto [C] coarray variable is the28

executing image set on which it is allocated unless it is specified by29

the COARRAY directive.30

Chapter 31

Base Language Extensions in2

XcalableMP C3

This chapter describes base language extensions in XcalableMP C that are not described in any4

other chapters.5

3.1 Array Section Notation6

Synopsis7

The array section notation is a notation to describe a part of an array, which is adapted in8

Fortran.9

Syntax10

[C] array-section is array-name[{ triplet | int-expr }]...11

where triplet is:12

[base] : [length] [: step]13

Description14

In XcalableMP C, the base language C is extended so that a part of an array, i.e., an array15

section, can be put in an array assignment statement, which is described in 3.2, and some16

XcalableMP constructs. An array section is built from a subset of the elements of an array,17

which is specified by this notation including at least one triplet.18

When step is positive, the triplet specifies a set of subscripts that is a regularly spaced integer19

sequence of length length beginning with base and proceeding in increments of step up to the20

largest. When step is negative, the triplet specifies a set of subscripts that is a regularly spaced21

integer sequence of length length beginning with base and proceeding in increments of step down22

to the smallest.23

When base is omitted, it is assumed to be 0. When length is omitted, it is assumed to account24

for the remainder of the array dimension. When step is omitted, it is assumed to be 1.25

An array section can be considered as a virtual array containing the set of elements from26

the original array, which is determined by all possible subscript lists that are specified by the27

sequence of triplets or int-expr’s in square brackets.28

15

16 CHAPTER 3. BASE LANGUAGE EXTENSIONS IN XCALABLEMP C

Restrictions 1

• [C] Each of base, length, and step must be an integer expression. 2

• [C] length must be greater than zero. 3

• [C] step must not be zero. 4

Example 5

Assuming that an array A is declared by the following statement, 6

int A[100]; 7

some array sections can be specified as follows: 8

A[10:10] array section of 10 elements from A[10] to A[19]

A[10:] array section of 90 elements from A[10] to A[99]

A[:10] array section of 10 elements from A[0] to A[9]

A[10:5:2] array section of 5 elements from A[10] to A[18] by step 2
A[:] the whole of A

9

3.2 Array Assignment Statement 10

Synopsis 11

An array assignment statement copies a value into each element of an array section. 12

Syntax 13

[C] array-section [:[int-expr]...] = expression; 14

Description 15

The value of each element of the result of the right-hand side expression is assigned to the 16

corresponding element of the array section on the left-hand side. When an operator or an 17

elemental function (see section 7.8) is applied to array sections in the right-hand side expression, 18

it is evaluated to an array section that has the same shape as that of the operands or arguments, 19

and each element of which is the result of the operator or function applied to the corresponding 20

element of the operands or arguments. A scalar object is assumed to be an array section that 21

has the same shape as that of the array section(s), and where each element has its value. 22

Note that an array assignment is a statement, and therefore cannot appear as an expression 23

in any other statements. 24

Restrictions 25

• [C] any array section appearing in the right-hand side expression and the left-hand side 26

must have the same shape, i.e., the same number of dimensions and size of each dimension. 27

• [C] If array-section on the left-hand side is followed by “:[int-expr]...”, it must be a 28

coarray. 29

3.3. BUILT-IN FUNCTIONS FOR ARRAY SECTION 17

Examples1

An array assignment statement in the fourth line copies the elements B[0] through B[4] into2

the elements A[5] through A[9].3

4

XcalableMP C
int A[10];

int B[5];

...

A[5:5] = B[0:5];

3.3 Built-in Functions for Array Section5

Some built-in functions are defined that can accept one or more array sections as arguments. In6

addition, some of them are array-valued. Such array-valued functions can appear in the right-7

hand side of an array assignment statement, and should be preceded by the array directive if8

the array section is distributed.9

All of the built-in functions for array sections are described in Sections 7.8 and 7.9.10

3.4 Pointer to Global Data11

3.4.1 Name of Global Array12

The name of a global array is considered to represent an abstract entity in the XcalableMP13

language. It is not interpreted as the pointer to the array, while the name of a local array is.14

However, the name of a global array that appears in an expression is evaluated to the base15

address of its local section on each node. The pointer can be operated on each node as if it were16

a normal (local) pointer.17

3.4.2 Address-of Operator18

The result of the address-of operator (“&”) applied to an element of a global array is the pointer19

to the corresponding element of its local section. Note that the value of the result pointer is20

defined only on the node that owns the element. The pointer can be operated on the node as if21

it were a normal (local) pointer.22

As a result, for a global array a, a and &a[0] are not always evaluated to the same value.23

3.5 Dynamic Allocation of Global Data24

In XcalableMP C, it is possible to allocate global arrays at runtime. Such an allocation is done25

by performing the following steps.26

1. Declare a pointer to an object of the type of the global array to be allocated.27

2. Align the pointer with a template as if it were an array.28

3. Allocate a block of memory of the global size using the xmp malloc library procedure, and29

assign the return value to the pointer on each node.30

18 CHAPTER 3. BASE LANGUAGE EXTENSIONS IN XCALABLEMP C

XcalableMP C
#pragma nodes p(NP1,NP2)

#pragma xmp template t(:,:)

#pragma xmp distribute t(block,block) onto p

5 float (*pa)[N2];

#pragma xmp align pa[i][j] with t(i,j)

#pragma xmp template_fix t(0:N1-1,0:N2-1)

pa = (float (*)[N2])xmp_malloc(xmp_desc_of(pa), N1, N2);

3.6 Descriptor-of Operator 1

The descriptor-of operator (“xmp desc of”) is introduced as a built-in operator in XcalableMP 2

C. 3

The result of the descriptor-of operator applied to XcalableMP entities such as node arrays, 4

templates, and global arrays is their descriptor, which can be used in various ways, including as 5

an argument of some inquiry procedures. The type of the result, xmp desc t, is implementation- 6

defined, and is defined in the xmp.h header file in XcalableMP C. 7

For the xmp desc of intrinsic function in XcalableMP Fortran, refer to section 7.1.1. 8

Chapter 41

Directives2

This chapter describes the syntax and behavior of XcalableMP directives. In this document,3

the following notation is used to describe XcalableMP directives.4

xxx type-face characters are used to indicate literal-type characters.
xxx... If the line is followed by “...”, then xxx can be repeated.
[xxx] xxx is optional.

The syntax rule continues.
[F] The following lines are effective only in XcalableMP Fortran.
[C] The following lines are effective only in XcalableMP C.

5

4.1 Directive Format6

4.1.1 General Rule7

In XcalableMP Fortran, XcalableMP directives are specified using special comments that are8

identified by unique sentinels !$xmp. An XcalableMP directive follows the rules for comment9

lines of either the Fortran free or fixed source form, depending on the source form of the sur-10

rounding program unit1. XcalableMP Fortran directives are case insensitive.11

[F] !$xmp directive-name clause12

In XcalableMP C, XcalableMP directives are specified using the #pragma mechanism pro-13

vided by the C standards. XcalableMP C directives are case-sensitive.14

[C] #pragma xmp directive-name clause15

Directives are classified as declarative directives and executable directives.16

The declarative directive is a directive that may only be placed in a declarative context.17

A declarative directive has no associated executable user code. The scope rule of declarative18

directives obeys that of the declaration statements in the base language. For example, in Xcal-19

ableMP Fortran, a node array declared by a nodes directive is visible only within either the20

program unit, the derived-type declaration, or the interface body that immediately surrounds21

the directives, unless it is overridden in the inner blocks or is use or host associated. Further, in22

XcalableMP C, a node array declared by a nodes directive is visible only in the range from the23

1Consequently, the rules of comment lines that an XcalableMP directive follows are the same as the ones
followed by an OpenMP directive.

19

20 CHAPTER 4. DIRECTIVES

declaring point to the end of the block when placed within a block, or of the file when placed 1

outside any blocks, unless overridden in the inner blocks. 2

Note that in XcalableMP Fortran, node arrays and templates in other scoping units are 3

accessible by use or host association. 4

The following directives are declarative directives. 5

• nodes 6

• template 7

• distribute 8

• align 9

• shadow 10

• coarray 11

The executable directives are placed in an executable context. A stand-alone directive is an 12

executable directive that has no associated user code, such as a barrier directive. An executable 13

directive and its associated user code make up an XcalableMP construct, as in the following 14

format: 15

[F] !$xmp directive-name clause ...
structured-block

16

[C] #pragma xmp directive-name clause ...
structured-block

17

Note that in XcalableMP Fortran, a corresponding end directive is required for some exe- 18

cutable directives such as task and tasks, and in XcalableMP C, the associated statement can 19

be a compound one. 20

The following directives are executable directives. 21

• template fix 22

• task 23

• tasks 24

• loop 25

• array 26

• reflect 27

• gmove 28

• barrier 29

• reduction 30

• bcast 31

• wait async 32

4.2. NODES DIRECTIVE 21

4.1.2 Combined Directive1

Synopsis2

Multiple attributes can be specified by one combined declarative directive, which is analogous3

to type declaration statements using the “::” punctuation.4

Syntax5

[F] !$xmp combined-directive is combined-attribute [, combined-attribute]... ::
combined-decl [, combined-decl]...

[C] #pragma xmp combined-directive is combined-attribute [, combined-attribute]... ::
combined-decl [, combined-decl]...

6

combined-attribute is one of:7

nodes

template

distribute (dist-format [, dist-format]...) onto nodes-name
align (align-source [, align-source]...)

with template-name (align-subscript [, align-subscript]...)
shadow (shadow-width [, shadow-width]...)
[F] dimension (explicit-shape-spec [, explicit-shape-spec]...)

8

and combined-decl is one of:9

nodes-decl
template-decl
array-name

10

Description11

A combined directive is interpreted as if an object corresponding to each combined-decl is de-12

clared in a directive corresponding to each combined-attribute, where all restrictions of each13

directive, in addition to the following ones, are applied.14

Restrictions15

• The same kind of combined-attribute must not appear more than once in a given combined-16

directive.17

• If the nodes attribute appears in a combined-directive, each combined-decl must be a18

nodes-decl.19

• If the template or distribute attribute appears in a combined-directive, each combined-20

decl must be a template-decl.21

• If the align or shadow attribute appears in a combined-directive, each combined-decl must22

be an array-name.23

• [F] If the dimension attribute appears in a combined-directive, any object to which it24

applies must be declared using either the template or the nodes attribute.25

22 CHAPTER 4. DIRECTIVES

4.2 nodes Directive 1

Synopsis 2

The nodes directive declares a named node array. 3

Syntax 4

[F] !$xmp nodes nodes-decl [, nodes-decl]...

[C] #pragma xmp nodes nodes-decl [, nodes-decl]...
5

where nodes-decl is one of: 6

nodes-name (nodes-spec [, nodes-spec]...)
nodes-name (nodes-spec [, nodes-spec]...) = nodes-ref
[C] nodes-name [nodes-spec][[nodes-spec]...]
[C] nodes-name [nodes-spec][[nodes-spec]...] = nodes-ref

7

and nodes-spec must be one of: 8

int-expr
*

9

Description 10

The nodes directive declares a node array that corresponds to a node set. 11

The first and third forms of the nodes directive are used to declare a node array that 12

corresponds to the entire node set. The second and fourth forms are used to declare a node 13

array, each element of which is assigned to the node of the node set specified by nodes-ref 14

at the corresponding position of its elements order. In the first and second forms, which use 15

parentheses, the element order of the declared node array is based on Fortran ’s. In the third 16

and fourth forms, which use square brackets, the element order of the declared node array is 17

based on C ’s. 18

If node-size in the last dimension is “*” in the first and second forms, or if that in the first 19

dimension is “*” in the third and fourth forms, then the size of the node array is automatically 20

adjusted according to the total size of either the entire node set in the first and third forms or 21

the referenced node set in the second and fourth forms. 22

Restrictions 23

• nodes-name must not conflict with any other local name in the same scoping unit. 24

• nodes-spec can be “*” only in the last dimension in the first and second forms, and nodes- 25

spec can be “*” only in the first dimension in the third and fourth forms. 26

• nodes-ref must not reference nodes-name either directly or indirectly. 27

• If no nodes-spec is “*”, then the product of all nodes-spec must be equal to the total size 28

of the entire node set in the first and third forms, or the referenced node set in the second 29

and fourth forms. 30

• nodes-subscript in nodes-ref must not be “*”. 31

4.2. NODES DIRECTIVE 23

Examples1

The following are examples of the first and the third forms that appears in the main program.2

Because the node array p, which corresponds to the entire node set, is declared to be of size 16,3

this program must be executed by 16 nodes.4

XcalableMP Fortran
program main

!$xmp nodes p(16)

!$xmp nodes q(4,*)

!$xmp nodes r(8)=p(3:10)

5 !$xmp nodes z(2,3)=p(1:6)

...

end program

XcalableMP C
int main() {

#pragma xmp nodes p[16]

#pragma xmp nodes q[*][4]

#pragma xmp nodes r[8]=p[2:8]

#pragma xmp nodes z[3][2]=p[0:6] 5

...

}

5

The following are examples of a node declaration in a procedure. Because p is declared in6

the second and fourth forms to have a size of 16 and corresponds to the executing node set, the7

invocation of the foo function must be executed by 16 nodes. The node array q is declared in8

the first and third forms, and corresponds to the entire node set. The node array r is declared9

as a subset of p, and x as a subset of q.10

XcalableMP Fortran
function foo()

!$xmp nodes p(16)=*

!$xmp nodes q(4,*)

!$xmp nodes r(8)=p(3:10)

5 !$xmp nodes x(2,3)=q(1:2,1:3)

...

end function

XcalableMP C
void foo(){

#pragma xmp nodes p[16]=*

#pragma xmp nodes q[*][4]

#pragma xmp nodes r[8]=p[2:8]

#pragma xmp nodes x[3][2]=q[0:3][0:2] 5

...

}

11

4.2.1 Node Reference12

Synopsis13

The node reference is used to reference a node set.14

Syntax15

A node reference nodes-ref is specified by either the name of a node array or the “*” symbol.16

nodes-ref is nodes-name [(nodes-subscript [, nodes-subscript]...)]
[C] nodes-ref is nodes-name [[nodes-subscript][[nodes-subscript]...]]

or *

17

where nodes-subscript must be one of:18

19

int-expr
triplet
*

20

Description21

A node reference by nodes-name represents a node set corresponding to the node array specified22

by the name or its subarray. It is totally ordered in Fortran’s array element order in the first23

24 CHAPTER 4. DIRECTIVES

form, and in C’s array element order in the second form. A node reference by “*” represents 1

the executing node set. 2

Specifically, the “*” symbol that appears as nodes-subscript in a dimension of nodes-ref is 3

interpreted by each node at runtime as its position (coordinate) in the dimension of the referenced 4

node array. Thus, a node reference p(s1, ..., sk−1, *, sk+1, ..., sn) is interpreted as 5

p(s1, ..., sk−1, jk, sk+1, ..., sn) on the node p(j1, ..., jk−1, jk, jk+1, ..., jn). 6

Note that “*” can be used only as the node reference in the on clause of some executable 7

directives. 8

Examples 9

Assume that p is the name of a node array and that m is an integer variable. 10

• As a target node array in the distribute directive, 11

12
XcalableMP Fortran

!$xmp distribute a(block) onto p
XcalableMP C

#pragma xmp distribute a(block) onto p 13

• To specify the node array to which the declared node array corresponds in the second and 14

fourth forms of the nodes directive, 15

16

XcalableMP Fortran
!$xmp nodes r(2,2,4) = p(1:4,1:4)

!$xmp nodes r(2,2,4) = p(1:16)

XcalableMP C
#pragma xmp nodes r[4][2][2] = p[0:4][0:4]

#pragma xmp nodes r[4][2][2] = p[0:16]
17

• To specify the node array that corresponds to the executing node set of a task in the task 18

directive, 19

XcalableMP Fortran
!$xmp task on p(1:4,1:4)

!$xmp task on p(1:16)

!$xmp task on p(:,*)

!$xmp task on p(m)

XcalableMP C
#pragma xmp task on p[0:4][0:4]

#pragma xmp task on p[0:16]

#pragma xmp task on p[*][:]

#pragma xmp task on p[m]

20

• To specify the node array that corresponds to the executing node set in the barrier and 21

the reduction directive, 22

23

XcalableMP Fortran
!$xmp barrier on p(5:8)

!$xmp reduction (+:a) on p(*,:)

XcalableMP C
#pragma xmp barrier on p[4:4]

#pragma xmp reduction (+:a) on p[:][*]
24

• To specify the source node and the node array that corresponds to the executing node set 25

in the bcast directive, 26

27
XcalableMP Fortran

!$xmp bcast (b) from p(k) on p(:)
XcalableMP C

#pragma xmp (b) from p[k-1] on p[:] 28

4.3 Template and Data Mapping Directives 29

4.3.1 template Directive 30

Synopsis 31

The template directive declares a template. 32

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 25

Syntax1

[F] !$xmp template template-decl [, template-decl]...

[C] #pragma xmp template template-decl [, template-decl]...
2

where template-decl is:3

template-name (template-spec [, template-spec]...)
[C] template-name [template-spec-c] [[template-spec-c]...]

4

and template-spec must be one of:5

[int-expr :] int-expr
:

6

and template-spec-c must be one of:7

int-expr
:

8

Description9

The template directive declares a template with the shape specified by the sequence of template-10

spec’s or template-spec-c’s. If every template-spec or template-spec-c is “:”, then the shape of11

the template is initially undefined. This template must not be referenced until the shape is12

defined by a template fix directive (see section 4.3.6) at runtime. If only int-expr is specified13

as template-spec, the default lower bound is one.14

Restrictions15

• template-name must not conflict with any other local name in the same scoping unit.16

• Every template-spec must be either [int-expr :] int-expr or “:”.17

• Every template-spec-c must be either int-expr or “:”.18

4.3.2 Template Reference19

Synopsis20

The template reference expression specified in the on or the from clause of some directives is21

used to indirectly specify a node set.22

Syntax23

template-ref is template-name [(template-subscript [, template-subscript]...)]
[C] template-ref is template-name [[template-subscript] [[template-subscript]...]]

24

where template-subscript must be one of:25

26

int-expr
triplet
*

27

26 CHAPTER 4. DIRECTIVES

Description 1

Being specified in the on or the from clause of some directives, the template reference refers to 2

a subset of a node set in which the specified subset of the template resides. 3

Specifically, the “*” symbol that appears as template-subscript in a dimension of template-ref 4

is interpreted by each node at runtime as the indices of the elements in the dimension that reside 5

in the node. “*” in a template reference is similar to “*” in a node reference. 6

Examples 7

Assume that t is a template. 8

• In the task directive, the executing node set of the task can be indirectly specified using 9

a template reference in the on clause. 10

XcalableMP Fortran
!$xmp task on t(1:m,1:n)

!$xmp task on t

XcalableMP C
#pragma xmp task on t[0:n][0:m]

#pragma xmp task on t
11

• In the loop directive, the executing node set of each iteration of the following loop is 12

indirectly specified using a template reference in the on clause. 13

XcalableMP Fortran
!$xmp loop (i) on t(i-1)

XcalableMP C
#pragma xmp loop (i) on t[i-1] 14

• In the array directive, the executing node set on which the associated array-assignment 15

statement is performed in parallel is indirectly specified using a template reference in the 16

on clause. 17

XcalableMP Fortran
!$xmp array on t(1:n)

XcalableMP C
#pragma xmp array on t[0:n] 18

• In the barrier, reduction, and bcast directives, the node set that is to perform the 19

operation collectively can be indirectly specified using a template reference in the on clause. 20

XcalableMP Fortran
!$xmp barrier on t(1:n)

!$xmp reduction (+:a) on t(*,:)

!$xmp bcast (b) on t(1:n)

XcalableMP C
#pragma xmp barrier on t[0:n]

#pragma xmp reduction (+:a) on t[:][*]

#pragma xmp bcast (b) on t[0:n]

21

4.3.3 distribute Directive 22

Synopsis 23

The distribute directive specifies the distribution of a template. 24

Syntax 25

[F] !$xmp distribute template-name (dist-format [, dist-format]...) onto nodes-name

[C] #pragma xmp distribute template-name (dist-format [, dist-format]...)
onto nodes-name

[C] #pragma xmp distribute template-name [dist-format] [[dist-format] ...]
onto nodes-name

26

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 27

where dist-format must be one of:1

*

block [(int-expr)]
cyclic [(int-expr)]
gblock ({ * | int-array })

2

Description3

According to the specified distribution format, a template is distributed onto a specified node4

array. The dimension of the node array that appears in the onto clause corresponds, in order5

of left-to-right, to the dimension of the distributed template for which the corresponding dist-6

format is not “*”.7

Let d be the size of the dimension of the template, p be the size of the corresponding8

dimension of the node array, ceiling and mod be Fortran’s intrinsic functions, and each of the9

arithmetic operators be that of Fortran. The interpretation of dist-format is as follows:10

“*” The dimension is not distributed.11

block Equivalent to block(ceiling(d/p)).12

block(n) The dimension of the template is divided into contiguous blocks of size n, which are13

distributed onto the corresponding dimension of the node array. The dimension of the14

template is divided into d/n blocks of size n, and one block of size mod(d,n) if any, and15

each block is assigned sequentially to an index along the corresponding dimension of the16

node array. Note that if k = p-d/n-1 > 0, then there is no block assigned to the last k17

indices.18

cyclic Equivalent to cyclic(1).19

cyclic(n) The dimension of the template is divided into contiguous blocks of size n, and these20

blocks are distributed onto the corresponding dimension of the node array in a round-robin21

manner.22

gblock(m) m is referred to as a mapping array. The dimension of the template is divided into23

contiguous blocks so that the i’th block is of size m(i), and these blocks are distributed24

onto the corresponding dimension of the node array.25

If at least one gblock(*) is specified in dist-format, then the template is initially undefined26

and must not be referenced until the shape of the template is defined by template fix directives27

at runtime.28

Restrictions29

• [C] template-name must be declared by a template directive that lexically precedes the30

directive.31

• The number of dist-format that is not “*” must be equal to the rank of the node array32

specified by nodes-name.33

• The size of the dimension of the template specified by template-name that is distributed34

by block(n) must be equal to or less than the product of the block size n and the size of35

the corresponding dimension of the node array specified by nodes-name.36

28 CHAPTER 4. DIRECTIVES

• The array int-array in parentheses following gblock must be an integer one-dimensional 1

array, and its size must be equal to the size of the corresponding dimension of the node 2

array specified by nodes-name. 3

• Every element of the array int-array in parentheses following gblock must have a value of 4

a nonnegative integer. 5

• The sum of the elements of the array int-array in parentheses following gblock must be 6

equal to the size of the corresponding dimension of the template specified by template- 7

name. 8

• [C] A distribute directive for a template must precede any of its references in the 9

executable code in the block. 10

Examples 11

Example 1 12

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp template t(64)

!$xmp distribute t(block) onto p

XcalableMP C
#pragma xmp nodes p[4]

#pragma xmp template t[64]

#pragma xmp distribute t[block] onto p

13

The template t is distributed in block format, as shown in the following table. 14

p(1) t(1:16)

p(2) t(17:32)

p(3) t(33:48)

p(4) t(49:64)

p[0] t[0:16]

p[1] t[16:16]

p[2] t[32:16]

p[3] t[48:16]

15

Example 2 16

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp template t(64)

!$xmp distribute t(cyclic(8)) onto p

XcalableMP C
#pragma xmp nodes p[4]

#pragma xmp template t[64]

#pragma xmp distribute t[cyclic(8)] onto p

17

The template t is distributed in cyclic format of size eight, as shown in the following 18

table. 19

p(1) t(1:8) t(33:40)

p(2) t(9,16) t(41:48)

p(3) t(17,24) t(49:56)

p(4) t(25,32) t(57:64)

p[0] t[0:8] t[32:8]

p[1] t[8:8] t[40:8]

p[2] t[16:8] t[48:8]

p[3] t[24:8] t[56:8]

20

Example 3 21

XcalableMP Fortran
!$xmp nodes p(8,5)

!$xmp template t(64,64,64)

!$xmp distribute t(*,cyclic,block) onto p

XcalableMP C
#pragma xmp nodes p[5][8]

#pragma xmp template t[64][64][64]

#pragma xmp distribute t[block][cyclic][*] onto p
22

The first dimension of the template t is not distributed. The second dimension is dis- 23

tributed onto the first dimension of the node array p in cyclic format. The third dimen- 24

sion is distributed onto the second dimension of p in block format. The results are as 25

follows: 26

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 29

p(1,1) t(1:64, 1:57:8, 1:13)

p(2,1) t(1:64, 2:58:8, 1:13)

... ...

p(8,5) t(1:64, 8:64:8, 53:64)

p[0][0] t[0:13][0:8:8][0:64]

p[0][1] t[0:13][1:8:8][0:64]

... ...

p[4][7] t[52:12][7:8:8][0:64]

1

Note that the “64” in template t is not divisible by “5” in node p. Thus, the sizes of the2

blocks are different among nodes.3

4.3.4 align Directive4

Synopsis5

The align directive specifies that an array is to be mapped in the same way as a specified6

template.7

Syntax8

[F] !$xmp align array-name (align-source [, align-source]...)
with template-name (align-subscript [, align-subscript]...)

[C] #pragma xmp align array-name [align-source] [[align-source]]...
with template-name (align-subscript [, align-subscript]...)

or
with template-name [align-subscript] [[align-subscript]...]

9

where align-source must be one of:10

scalar-int-variable
*

:

11

and align-subscript must be one of:12

scalar-int-variable [{ + | - } int-expr]
*

:

13

Note that the variable scalar-int-variable that appears in align-source is referred to as an14

“align dummy variable” and int-expr appearing in align-subscript as an “align offset.”15

Description16

The array specified by array-name is aligned with the template that is specified by template-17

name so that each element of the array indexed by the sequence of align-sources is aligned with18

the element of the template indexed by the sequence of align-subscripts, where align-sources and19

align-subscripts are interpreted as follows:20

1. The first form of align-source and align-subscript represents an align dummy variable and21

an expression of it, respectively. The align dummy variable is considered to range over all22

valid index values in the corresponding dimension of the array.23

2. The second form “*” of align-source and align-subscript represents a dummy variable (not24

an align dummy variable) that does not appear anywhere in the directive.25

30 CHAPTER 4. DIRECTIVES

• The second form of align-source is said to “collapse” the corresponding dimension of 1

the array. As a result, the index along the corresponding dimension does not affect 2

the determination of the alignment. 3

• The second form of align-subscript is said to “replicate” the array. Each element of the 4

array is replicated, and is aligned to all index values in the corresponding dimension 5

of the template. 6

3. The third form of align-source and the matching align-subscript represents the same align 7

dummy variable whose range spans all valid index values in the corresponding dimension 8

of the array. The matching of colons (“:”) in the sequence of align-sources and align- 9

subscripts is determined as follows: 10

• [F] Colons in the sequence of align-sources and those in the sequence of align- 11

subscripts are matched in corresponding left-to-right order, where any align-source 12

and align-subscript that is not a colon is ignored. 13

• [C] Colons in the sequence of align-sources in right-to-left order, and those in the 14

sequence of (align-subscript)’s in left-to-right order are matched, or those in the 15

sequence of [align-subscript]’s in right-to-left order are matched, where any align- 16

source and align-subscript that is not a colon is ignored. 17

In XcalableMP C, an align directive for a dummy argument can be placed either outside 18

the function body (as in the old style of C) or in it (as in the ANSI style). 19

Restrictions 20

• [C] array-name must be declared by a declaration statement that lexically precedes the 21

directive. 22

• An align dummy variable may appear at most once in the sequence of align-sources. 23

• An align dummy variable may appear at most once in the sequence of align-subscripts. 24

• An align-subscript may contain at most one occurrence of an align dummy variable. 25

• The int-expr in an align-subscript may not contain any occurrence of an align dummy 26

variable. 27

• The sequence of align-sources must contain exactly as many colons as contained by the 28

sequence of align-subscripts. 29

• [F] The array specified by array-name must not appear as an equivalence-object in an 30

equivalence statement. 31

• [C] An align directive for an array must precede any of its appearances in the executable 32

code in the block. 33

• [F] The array specified by array-name shall not be initially defined. 34

• [C] The array specified by array-name shall not be initialized through an initializer. 35

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 31

Examples1

Example 12

XcalableMP Fortran
!$xmp align a(i) with t(i)

XcalableMP C
#pragma xmp align a[i] with t[i]3

In XcalableMP Fortran, the array element a(i) is aligned with the template element4

t(i). In XcalableMP C, the array element a[i] is aligned with the template element5

t[i]. These are equivalent to the following codes.6

XcalableMP Fortran
!$xmp align a(:) with t(:)

XcalableMP C
#pragma xmp align a[:] with t[:]7

Example 28

XcalableMP Fortran
!$xmp align a(*,j) with t(j)

XcalableMP C
#pragma xmp align a[j][*] with t[j]9

In XcalableMP Fortran, the subarray a(:,j) is aligned with the template element t(j).10

Note that the first dimension of a is collapsed. In XcalableMP C, the subarray a[j][:] is11

aligned with the template element t[j]. Note that the second dimension of a is collapsed.12

Example 313

XcalableMP Fortran
!$xmp align a(j) with t(*,j)

XcalableMP C
#pragma xmp align a[j] with t[j][*]14

In XcalableMP Fortran, the array element a(j) is replicated and aligned with each tem-15

plate element of t(:,j). In XcalableMP C, the array element a[j] is replicated and16

aligned with each template element of t[j][:].17

Example 418

XcalableMP Fortran
!$xmp template t(n1,n2)

real a(m1,m2)

!$xmp align a(*,j) with t(*,j)

XcalableMP C
#pragma xmp template t[n2][n1]

double a[m2][m1]

#pragma xmp align a[j][*] with t[j][*]

19

In XcalableMP Fortran, the subarray a(:,j) is aligned with each template element of20

t(:,j). In XcalableMP C, the subarray a[j][:] is aligned with each template element21

of t[j][:].22

By replacing “*” of the array a and “*” of the template t with a dummy variable i and23

k, respectively, this alignment can be interpreted as the following mapping.24

[F] a(i, j) → t(k, j) | (i, j, k) ∈ (1 : n1, 1 : n2, 1 : m1)25

[C] a[j][i] → t[j][k] | (i, j, k) ∈ (0 : n1, 0 : n2, 0 : m1)26

4.3.5 shadow Directive27

Synopsis28

The shadow directive allocates the shadow area for a distributed array.29

Syntax30

[F] !$xmp shadow array-name (shadow-width [, shadow-width]...)

[C] #pragma xmp shadow array-name [shadow-width][[shadow-width]]...
31

32 CHAPTER 4. DIRECTIVES

where shadow-width must be one of: 1

int-expr
int-expr : int-expr
*

2

Description 3

The shadow directive specifies the width of the shadow area of an array specified by array-name, 4

which is used to communicate the neighbor element of the block of the array. When shadow- 5

width is of the form “int-expr : int-expr,” the shadow area of the width specified by the first 6

int-expr is added at the lower bound, and that specified by the second one is added at the upper 7

bound in the dimension. When shadow-width is of the form int-expr, the shadow area of the 8

same width specified is added at both the upper and lower bounds in the dimension. When 9

shadow-width is of the form “*”, the entire area of the array is allocated on each node, and the 10

area that it does not own is regarded as a shadow. This type of shadow is sometimes referred 11

to as a “full shadow.” 12

Note that the shadow area of a multi-dimensional array includes “obliquely-neighboring” 13

elements, which are owned by the node whose indices are different in more than one dimension, 14

and that the shadow area can also be allocated at the global lower and upper bounds of an 15

array. 16

The data stored in the storage area declared by the shadow directive is referred to as a 17

shadow object. A shadow object represents an element of a distributed array, and corresponds 18

to the data object that represents the same element as itself. The corresponding data object is 19

referred to as the reflection source of the shadow object. 20

Restrictions 21

• [C] array-name must be declared by a declaration statement that lexically precedes the 22

directive. 23

• The value specified by shadow-width must be a nonnegative integer. 24

• The number of shadow-width must be equal to the number of dimensions (or rank) of the 25

array specified by array-name. 26

• [C] A shadow directive for an array must precede any of its appearances in the executable 27

code in the block. 28

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 33

Example1

XcalableMP Fortran
!$xmp nodes p(4,4)

!$xmp template t(64,64)

!$xmp distribute t(block,block) onto p

5 real a(64,64)

!$xmp align a(i,j) with t(i,j)

!$xmp shadow a(1,1)

a(17:32,
 17:32)

a(16,16)

a(17:32,16)

a(33,16)

a(16,17:32)

a(33,17:32)

a(16,33)

a(17:32,33)

a(33,33)

Figure 4.1: Example showing shadow
of a two-dimensional array.

2

The node p(2,2) has a(17:32,17:32) as a data object, and a(16,16), a(17:32,16),3

a(33,16), a(16,17:32), a(33,17:32), a(16,33), a(17:32,33), and a(33,33) as shadow ob-4

jects (Figure 4.1). Among them, a(16,16), a(33,16), a(16,33), and a(33,33) are “obliquely-5

neighboring” elements of p(2,2).6

4.3.6 template fix Construct7

Synopsis8

This construct fixes the shape and/or the distribution of an undefined template.9

Syntax10

[F] !$xmp template fix

[(dist-format [, dist-format]...)] template-name [(template-spec [, template-spec]...)]

[C] #pragma xmp template fix

[(dist-format [, dist-format]...)] template-name [(template-spec [, template-spec]...)]
or

[[dist-format [, dist-format]...]] template-name [template-spec] [[template-spec]...]

11

12

where template-spec is:13

[int-expr :] int-expr14

and dist-format is one of:15

*

block [(int-expr)]
cyclic [(int-expr)]
gblock (int-array)

16

Description17

The template fix construct fixes the shape and/or the distribution of the template that is18

initially undefined, by specifying the sizes and/or the distribution format of each dimension19

at runtime. Arrays that are aligned with an initially undefined template must be allocatable20

arrays, in XcalableMP Fortran, or a pointer (see Section 3.5), in XcalableMP C, which cannot21

34 CHAPTER 4. DIRECTIVES

be allocated until the template is fixed by the template fix construct. No constructs that 1

have such a template in their on clause should be encountered until the template is fixed by the 2

template fix construct. Any undefined template can be fixed only once by the template fix 3

construct in its scoping unit. 4

The meaning of the sequence of dist-formats is the same as that in the distribute directive. 5

Restrictions 6

• When a node encounters a template fix construct at runtime, the template specified by 7

template-name must be undefined. 8

• If the sequence of dist-formats exists in a template fix construct, it must be identical 9

to the sequence of dist-formats in the distribute directive for the template specified by 10

template-name, except for int-array specified in the parenthesis immediately after gblock. 11

• Either the sequence of dist-formats or the sequence of template-spec’s should be given. 12

Example 13

XcalableMP Fortran
!$xmp nodes p(*)

!$xmp template t(:)

!$xmp distribute t(gblock(*)) onto p

real, allocatable :: a(:)

5 !$xmp align a(i) with t(i)

...

N = ...

M(...) = ...

...

10 !$xmp template_fix(gblock(M)) t(N)

...

allocate (a(N))

XcalableMP C
#pragma xmp nodes p[*]

#pragma xmp template t[:]

#pragma xmp distribute t[gblock(*)] onto p

double *a;

#pragma xmp align a[i] with t[i] 5

...

N = ...;

M[] = {...};

...

#pragma xmp template_fix[gblock(M)] t[N] 10

...

a = xmp_malloc(xmp_desc_of(a), N);

14

Because the shape is t(:) or t[:] and the distribution format is gblock(*), the template 15

t is initially undefined. The allocatable array a is aligned with t. After the size N and the 16

mapping array M is defined, t is fixed by the template fix construct and a is allocated. 17

In XcalableMP C, it is possible to allocate global arrays at runtime only when they are 18

one-dimensional. Such an allocation is done by perfoming the following steps. 19

1. Declare a pointer to an object of the type of the global array to be allocated. 20

2. Align the pointer with a template as if it were a one-dimensional array. 21

3. Allocate a storage of the global size with the function xmp malloc() and assign the result 22

value to the pointer on each node. 23

The functions xmp desc of() and xmp malloc() are described in section 3.6 and 7.5.1, respec- 24

tively. 25

4.4. WORK MAPPING CONSTRUCT 35

4.4 Work Mapping Construct1

4.4.1 task Construct2

Synopsis3

The task construct defines a task that is executed by a specified node set.4

Syntax5

[F] !$xmp task on {nodes-ref | template-ref}
structured-block
!$xmp end task

[C] #pragma xmp task on {nodes-ref | template-ref}
structured-block

6

Description7

When a node encounters a task construct at runtime, it executes the associated block (called a8

task) if it is included by the node set specified by the on clause; otherwise, it skips the execution9

of the block.10

Unless a task construct is surrounded by a tasks construct, nodes-ref or template-ref in the11

on clause is evaluated by the executing node set at the start of the task; otherwise, nodes-ref12

and template-ref of the task construct are evaluated by the executing node set at the entry of13

the tasks construct that immediately surrounds it. The current executing node set is set to be14

that specified by the on clause at the entry of the task construct, and it is rewound to the last15

one at the exit.16

Restrictions17

• The node set specified by nodes-ref or template-ref in the on clause must be a subset of18

the parent node set.19

Example20

Example 1 In XcalableMP Fortran, copies of variables a and b are replicated on nodes nd(1)21

through nd(8). A task defined by the task construct is executed only on nd(1), and22

defines the copies of a and b on a node nd(1). The copies on nodes nd(2) through nd(8)23

are not defined.24

In XcalableMP C, copies of variables a and b are replicated on nodes nd[0] through nd[7].25

A task defined by the task construct is executed only on nd[0], and defines the copies of26

a and b on a node nd[0]. The copies on nodes nd[1] through nd[7] are not defined.27

28

36 CHAPTER 4. DIRECTIVES

XcalableMP Fortran
!$xmp nodes nd(8)

!$xmp template t(100)

!$xmp distribute t(block) onto nd

5 real a, b;

!$xmp task on nd(1)

read(*,*) a

b = a*1.e-6

10 !$xmp end task

XcalableMP C
#pragma xmp nodes nd[8]

#pragma xmp template t[100]

#pragma xmp distribute t[block] onto nd

float a, b; 5

#pragma xmp task on nd[0]

{

scanf ("%f", &a);

b = a*1.e-6; 10

}

1

Example 2 According to the on clause with a template reference, an assignment statement in 2

the task construct is executed by the owner of the array element a(:,j) or a[j][:]. 3

4
XcalableMP Fortran

!$xmp nodes nd(8)

!$xmp template t(100)

!$xmp distribute t(block) onto nd

5 integer i,j

real a(200,100)

!$xmp align a(*,j) with t(j)

i = ...

10 j = ...

!$xmp task on t(j)

a(i,j) = 1.0

!$xmp end task

XcalableMP C
#pragma xmp nodes nd[8]

#pragma xmp template t[100]

#pragma xmp distribute t(block) onto nd

int i,j; 5

float a[100][200];

#pragma align a[j][*] with t[j]

i = ...;

j = ...; 10

#pragma xmp task on t[j]

a[j][i] = 1.0;

}

5

4.4.2 tasks Construct 6

Synopsis 7

The tasks construct is used to instruct the executing nodes to execute the multiple tasks that 8

it surrounds in an arbitrary order. 9

Syntax 10

[F] !$xmp tasks

task-construct
...
!$xmp end tasks

[C] #pragma xmp tasks

{
task-construct
...

}

11

4.4. WORK MAPPING CONSTRUCT 37

Description1

task constructs surrounded by a tasks construct are executed in arbitrary order without implicit2

synchronization at the start of each task. As a result, if there are no overlaps between the3

executing node sets of the adjacent tasks, they can be executed in parallel.4

nodes-ref or template-ref of each task immediately surrounded by a tasks construct is eval-5

uated by the executing node set at the entry of the tasks construct.6

No implicit synchronization is performed at the start and end of the tasks construct.7

Example8

Example 1 Three instances of subroutine task1 are concurrently executed by node sets p(1:500),9

p(501:800), and p(801:1000).10

11
XcalableMP Fortran

subroutine caller

!$xmp nodes p(1000)

!$xmp template tp(100)

!$xmp distribute t(block) onto p

5 real a(100,100)

!$xmp align a(*,k) with t(k)

...

!$xmp tasks

!$xmp task on p(1:500)

10 call task1(a)

!$xmp end task

!$xmp task on p(501:800)

call task1(a)

!$xmp end task

15 !$xmp task on p(801:1000)

call task1(a)

!$xmp end task

!$xmp end tasks

...

20 end subroutine

XcalableMP Fortran
subroutine task1(a)

...

!$xmp nodes q(*)=*

!$xmp nodes p(1000) 5

!$xmp distribute t(block) onto p

real a(100,100)

!$xmp align a(*,k) with t(k)

...

end subroutine 10

12

Example 2 The first node p(1) executes the first and second tasks, the final node p(8) the13

second and the third tasks, and the other nodes p(2) through p(7) only the second task.14

15

XcalableMP Fortran
!$xmp nodes p(8)

!$xmp template t(100)

!$xmp distribute t(block) onto p

real a(100)

5 !$xmp align a(i) with t(i)

...

!$xmp tasks

!$xmp task on t(1)

38 CHAPTER 4. DIRECTIVES

10 a(1) = 0.0

!$xmp end task

!$xmp task on t(2:99)

!$xmp loop on t(i)

15 do i=2,99

a(i) = foo(i)

enddo

!$xmp end task

20 !$xmp task on t(100)

a(100) = 0.0

!$xmp end task

!$xmp end tasks

4.4.3 loop Construct 1

Synopsis 2

The loop construct specifies that each iteration of the following loop is executed by a node set 3

that is specified by the on clause, so the iterations are distributed among nodes and executed in 4

parallel. 5

Syntax 6

[F] !$xmp loop [(loop-index [, loop-index]...)] on {nodes-ref | template-ref}
[expand(expand-width [, expand-width]...)]
[margin(margin-width [, margin-width]...)]
[reduction-clause]...

do-loops

[C] #pragma xmp loop [(loop-index [, loop-index]...)] on {nodes-ref | template-ref}
[expand(expand-width [, expand-width]...)]
[margin(margin-width [, margin-width]...)]
[reduction-clause]...

for-loops

7

where expand-width and margin-width must be one of: 8

[/unbound/] int-expr
[/unbound/] int-expr : int-expr

9

reduction-clause is: 10

reduction(reduction-kind : reduction-spec [, reduction-spec]...) 11

reduction-kind is one of: 12

4.4. WORK MAPPING CONSTRUCT 39

[F] +

*

-

.and.

.or.

.eqv.

.neqv.

max

min

iand

ior

ieor

firstmax

firstmin

lastmax

lastmin

[C] +

*

-

&

|

^

&&

||

max

min

firstmax

firstmin

lastmax

lastmin

1

and reduction-spec is:2

reduction-variable [/ location-variable [, location-variable]... /]3

Description4

A loop directive is associated with a loop nest consisting of one or more tightly nested loops5

that follow the directive, and it distributes the execution of their iterations onto the node set6

specified by the on clause.7

The sequence of loop-indexes in parenthesis denotes an index of an iteration of the loop nests.8

If a control variable of a loop does not appear in the sequence, it is assumed that each of its9

possible values is specified in the sequence. The sequence can be considered to denote a set of10

indices of iterations. When the sequence is omitted, it is assumed that the control variables of11

all the loops in the associated loop nests are specified.12

When a template-ref is specified in the on clause, the associated loop is distributed so that13

the iteration (set) indexed by the sequence of loop-indexes is executed by the node onto which14

a template element specified by the template-ref is distributed.15

When a nodes-ref is specified in the on clause, the associated loop is distributed so that the16

iteration (set) indexed by the sequence of loop-indexes is executed by a node specified by the17

40 CHAPTER 4. DIRECTIVES

nodes-ref. 1

In addition, the executing node set is updated to the node set specified by the on clause at 2

the beginning of every iteration, and it is restored to the last one at the end of it. 3

When a reduction-clause is specified, a reduction operation of the kind specified by reduction- 4

kind for a variable specified by reduction-variable is executed just after the execution of the loop 5

nest. 6

When the expand clause is specified, and is of the form “int-expr : int-expr” in a dimension, 7

the first int-expr is subtracted from the local lower bound in that dimension, and the second 8

one is added to the local upper bound. When the expand clause is specified, and is of the form 9

int-expr, the int-expr is subtracted from the local lower bound in that dimension, and is added 10

to the local upper bounds. However, an “expanded” local iteration space does not spread out 11

of the original global iteration space unless the /unbound/ modifier is specified in expand-width. 12

When the margin clause is specified, the loop is transformed so that its local iteration space,
margin, is:

margin = expand△ orig

where expand is a local iteration space when an expand clause with the same argument(s) is 13

specified, orig is a local iteration space when neither expand normargin, and△ is the symmetric 14

difference operator. 15

(Advice to programmers and implementers) Using the expand and margin clauses 16

and asynchronous communication, programmers can overlap computation and com- 17

munication as in the code left below. It is recommended for the implementation to 18

support an extension that is a syntactic sugar for those sequence of constructs, such 19

as the peel and wait clause in the code immediately following. 20

XcalableMP Fortran
!$xmp reflect (a) async(10)

!$xmp loop (i,j) on t(i,j)

!$xmp+ expand(-1,-1)

5 do j = 1, 16

do i = 1, 16

...

end do

end do

10

!$xmp wait_async (10)

!$xmp loop (i,j) on t(i,j)

!$xmp+ margin(-1,-1)

15 do j = 1, 16

do i = 1, 16

...

end do

end do

XcalableMP Fortran
!$xmp reflect (a) async(10)

!$xmp loop (i,j) on t(i,j)

!$xmp+ peel_and_wait(10, -1,-1)

do j = 1, 16 5

do i = 1, 16

...

end do

end do

21

The reduction operation that is executed, except in cases with reduction-kind of FIRSTMAX, 22

FIRSTMIN, LASTMAX, or LASTMIN, is equivalent to the reduction construct with reduction-kind 23

of “+” for “-” in the clause and the same reduction-kind for the other kinds, the same reduction- 24

variable, and an on clause obtained from that of the loop directive by replacing each loop-index 25

4.4. WORK MAPPING CONSTRUCT 41

in the nodes-ref or the template-ref with a triplet representing the range of its value. As an1

example, the two codes below are therefore equivalent.2

XcalableMP Fortran
!$xmp loop (j) on t(:,j)

!$xmp+ reduction(op:s)

do j = js, je

...

5 do i = 1, N

s = s op a(i,j)

end do

...

end do

XcalableMP Fortran
! Initialize s_tmp to the identity

! element of the op operator

s_tmp = ...

!$xmp loop (j) on t(:,j) 5

do j = js, je

...

do i = 1, N

s_tmp = s_tmp op a(i,j)

end do 10

...

end do

!$xmp reduction(op:s_tmp)

!$xmp+ on t(*,js:je) 15

s = s op s_tmp

3

In particular, for the reduction kinds of FIRSTMAX, FIRSTMIN, LASTMAX, and LASTMIN, in4

addition to a corresponding MAX or MIN reduction operation, the location-variables are set after5

executing the loop construct as follows:6

• For FIRSTMAX and FIRSTMIN, they are set to their values at the end of the first iteration7

in which the reduction-variable takes the value of the reduction result, where first refers8

to the first position in the sequential order in which iterations of the associated loop nest9

were executed without parallelization.10

• For LASTMAX and LASTMIN, they are set to their values at the end of the last iteration in11

which the reduction-variable takes the value of the reduction result, where last refers to the12

last position in the sequential order in which iterations of the associated loop nest were13

executed without parallelization.14

Restrictions15

• loop-index must be a control variable of a loop in the associated loop nest.16

• A control variable of a loop can appear as loop-index at most once.17

• The node set specified by nodes-ref or template-ref in the on clause must be a subset of18

the parent node set.19

• The template specified by template-ref must be fixed before the loop construct is executed.20

• The loop construct is global, which means that it must be executed by all of the executing21

nodes with the same values for each local variable referenced in the directive, and the lower22

bound, upper bound, and step of the associated loop.23

• Either of the expand or margin clause, if any, can be specified.24

• The number of expand-width, if any, must be equal to the number of dimensions (or rank)25

of the template specified by template-ref or of the node array specified by node-ref.26

42 CHAPTER 4. DIRECTIVES

• The number of margin-width, if any, must be equal to the number of dimensions (or rank) 1

of the template specified by template-ref or of the node array specified by node-ref. 2

• reduction-spec must have one or more location-variable’s if and only if reduction-kind is 3

either FIRSTMAX, FIRSTMIN, LASTMAX, or LASTMIN. 4

Examples 5

Example 1 6

XcalableMP Fortran
!$xmp distribute t(block) onto p

!$xmp align (i) with t(i) :: a, b

...

!$xmp loop (i) on t(i)

5 do i = 1, N

a(i) = 1.0

b(i) = a(i)

end do

The loop construct determines the node that executes each of the iterations, according to 7

the distribution of template t, and distributes the execution. This example is syntactically 8

equivalent to the one shown below, but will be faster because the iterations to be executed 9

by each node can be determined before executing the loop. 10

XcalableMP Fortran
!$xmp distribute t(block) onto p

!$xmp align (i) with t(i) :: a, b

...

do i = 1, N

5 !$xmp task on t(i)

a(i) = 1.0

b(i) = a(i)

!$xmp end task

end do

Example 2 11

XcalableMP Fortran
!$xmp distribute t(*,block) onto p

!$xmp align (i,j) with t(i,j) :: a, b

...

!$xmp loop (i,j) on t(i,j)

5 do j = 1, M

do i = 1, N

a(i,j) = 1.0

b(i,j) = a(i,j)

end do

10 end do

Because the first dimension of template t is not distributed, only the j loop, which is 12

aligned with the second dimension of t, is distributed. This example is syntactically 13

equivalent to the task construct shown below. 14

4.4. WORK MAPPING CONSTRUCT 43

XcalableMP Fortran
!$xmp distribute t(*,block) onto p

!$xmp align (*,j) with t(*,j) :: a, b

...

do j = 1, M

5 !$xmp task on t(*,j)

do i = 1, N

a(i,j) = 1.0

b(i,j) = a(i,j)

end do

10 !$xmp end task

end do

Example 31

XcalableMP Fortran
!$xmp distribute t(block,block) onto p

!$xmp align (i,j) with t(i,j) :: a, b

...

!$xmp loop (i,j) on t(i,j)

5 do j = 1, M

do i = 1, N

a(i,j) = 1.0

b(i,j) = a(i,j)

end do

10 end do

The distribution of loops in the nested loop can be specified using the sequence of loop-2

indexes in one loop construct. This example is equivalent to the loop shown below, but3

will run faster because the iterations to be executed by each node can be determined4

outside of the nested loop. Note that the node set specified by the inner on clause is a5

subset of that specified by the outer one.6

XcalableMP Fortran
!$xmp distribute t(block,block) onto p

!$xmp align (i,j) with t(i,j) :: a, b

...

!$xmp loop (j) on t(:,j)

5 do j = 1, M

!$xmp loop (i) on t(i,j)

do i = 1, N

a(i,j) = 1.0

b(i,j) = a(i,j)

10 end do

end do

Example 47

XcalableMP Fortran
!$xmp nodes p(10,3)

...

!$xmp loop on p(:,i)

do i = 1, 3

44 CHAPTER 4. DIRECTIVES

5 call subtask (i)

end do

Three node sets p(:,1), p(:,2), and p(:,3) are created as the executing node sets, 1

and each of them executes iterations 1, 2, and 3 of the associated loop, respectively. 2

This example is equivalent to the loop containing task constructs (below left) or static 3

tasks/task constructs (below right). 4

XcalableMP Fortran
!$xmp nodes p(10,3)

...

do i = 1, 3

!$xmp task on p(:,i)

5 call subtask (i)

!$xmp end task

end do

XcalableMP Fortran
!$xmp nodes p(10,3)

...

!$xmp tasks

!$xmp task on p(:,1)

call subtask (1) 5

!$xmp end task

!$xmp task on p(:,2)

call subtask (2)

!$xmp end task

!$xmp task on p(:,3) 10

call subtask (3)

!$xmp end task

!$xmp end tasks

5

Example 5 6

XcalableMP Fortran
...

lb(1) = 1

iub(1) = 10

lb(2) = 11

5 iub(2) = 25

lb(3) = 26

iub(3) = 50

!$xmp loop (i) on p(lb(i):iub(i))

do i = 1, 3

10 call subtask (i)

end do

The executing node sets of different sizes are created by p(lb(i):iub(i)) with different 7

values of i for unbalanced workloads. This example is equivalent to the loop containing 8

task constructs (below left) or static tasks/task constructs (below right). 9

4.4. WORK MAPPING CONSTRUCT 45

XcalableMP Fortran
do i = 1, 3

!$xmp task on p(lb(i):iub(i))

call subtask (i)

!$xmp end task

5 end do

...

XcalableMP Fortran
!$xmp tasks

!$xmp task on p(1:10)

call subtask (1)

!$xmp end task

!$xmp task on p(11:25) 5

call subtask (2)

!$xmp end task

!$xmp task on p(25:50)

call subtask (3)

!$xmp end task 10

!$xmp end tasks

1

Example 62

XcalableMP Fortran
...

s = 0.0

!$xmp loop (i) on t(i) reduction(+:s)

do i = 1, N

5 s = s + a(i)

end do

This loop computes the sum of a(i) into the variable s on each node. Note that only the3

partial sum is computed on s without the reduction clause. This example is equivalent to4

the code given below.5

XcalableMP Fortran
...

s = 0.0

!$xmp loop (i) on t(i)

do i = 1, N

5 s = s + a(i)

end do

!$xmp reduction(+:s) on t(1:N)

Example 76

XcalableMP Fortran
...

amax = -1.0e30

ip = -1

jp = -1

5 !$xmp loop (i,j) on t(i,j) reduction(firstmax:amax/ip,jp/)

do j = 1, M

do i = 1, N

if(1(i,j) .gt. amx) then

amx = a(i,j)

10 ip = i

jp = j

end if

46 CHAPTER 4. DIRECTIVES

end do

end do

This loop computes the maximum value of a(i,j) and stores it into the variable amax in 1

each node. In addition, the first indices for the maximum element of a are obtained in 2

ip and jp after executing the loops. Note that this example cannot be written using the 3

reduction construct. 4

Example 8 5

XcalableMP Fortran
!$xmp loop (i,j) on t(i,j) expand(/unbound/1,/unbound/1)

do j = 1, 16

do i = 1, 16

...

5 end do

end do

!$xmp loop (i,j) on t(i,j) margin(/unbound/1,/unbound/1)

do j = 1, 16

10 do i = 1, 16

...

end do

end do

Assuming that the template t(100,100) is distributed in (block,block) onto a node array 6

p(4,4), the original local iteration space on p(1,1), orig1,1 is: 7

orig1,1 = { (1, 1), (2, 1), (3, 1), (4, 1),
(1, 2), (2, 2), (3, 2), (4, 2),
(1, 3), (2, 3), (3, 3), (4, 3),
(1, 4), (2, 4), (3, 4), (4, 4) }

and it is expanded using the expand clause for the first loop, as follows: 8

expand(1, 1)1,1 = { (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5),
(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),
(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),
(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5) }

Note that expand(1, 1)1,1 spreads out of the original global iteration space {(i, j) | 1 ≤ 9

i, j ≤ 16} because the /unbound/ specifier is specified in the expand clause. 10

The local iteration space for the second loop with the margin clause is defined using the 11

symmetric difference operator, as follows: 12

margin(1, 1)1,1 = expand(1, 1)1,1△orig1,1
= { (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5),

(1, 0), (1, 5),
(2, 0), (2, 5),
(3, 0), (3, 5),
(4, 0), (4, 5),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5) }

4.4. WORK MAPPING CONSTRUCT 47

4.4.4 array Construct1

Synopsis2

The array construct divides the work of an array assignment between nodes.3

Syntax4

[F] !$xmp array on template-ref
array-assignment-statement

[C] #pragma xmp array on template-ref
array-assignment-statement

5

Description6

The array assignment is an alternative to a loop that performs an assignment to each element7

of an array. This directive specifies the parallel execution of an array assignment, where each8

sub-assignment and sub-operation of an element is executed by a node that is determined by9

the on clause.10

Note that array assignments can also be used in XcalableMP C, which is one of the language11

extensions introduced by XcalableMP (see Section 3.2).12

Restrictions13

• The node set specified by template-ref in the on clause must be a subset of the parent node14

set.15

• The template section specified by template-ref must have the same shape as the associated16

array assignment.17

• The array construct is global and must be executed by all of the executing nodes with18

the same valuse for the variables that appear in the construct.19

Examples20

Example 121

XcalableMP Fortran
!$xmp distribute t(block) onto p

!$xmp align (i) with t(i) :: a

...

!$xmp array on t(1:N)

5 a(1:N) = 1.0

This example is equivalent to the code shown below.22

XcalableMP Fortran
!$xmp distribute t(block) onto p

!$xmp align (i) with t(i) :: a

...

!$xmp loop on t(1:N)

5 do i = 1, N

a(i) = 1.0

end do

48 CHAPTER 4. DIRECTIVES

Example 2 1

XcalableMP Fortran
!$xmp template t(100,20)

!$xmp distribute t(block,block) onto p

dimension a(100,20), b(100,20)

!$xmp align (i,j) with t(i,j) :: a, b

5 ...

!$xmp array on t

a = b + 2.0

This example is equivalent to the code shown below. 2

XcalableMP Fortran
!$xmp template t(100,20)

!$xmp distribute t(block,block) onto p

dimension a(100,20), b(100,20)

!$xmp align (i,j) with t(i,j) :: a, b

5 ...

!$xmp loop (i,j) on t(i,j)

do j = 1, 20

do i = 1, 100

a(i,j) = b(i,j) + 2.0

10 end do

end do

4.5 Global-view Communication and Synchronization Constructs 3

4.5.1 reflect Construct 4

Synopsis 5

The reflect construct assigns the value of a reflection source to the corresponding shadow 6

object. 7

Syntax 8

[F] !$xmp reflect (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal] [async (async-id)]

[C] #pragma xmp reflect (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal] [async (async-id)]

9

where reflect-width must be one of: 10

[/periodic/] int-expr
[/periodic/] int-expr : int-expr

11

Description 12

The reflect construct updates each of the shadow objects of the array specified by array-name 13

with the value of its corresponding reflection source. Note that the shadow objects corresponding 14

to elements at the non-orthogonal positions are also updated with this construct, unless the 15

orthogonal clause is specified. 16

4.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 49

When the width clause is specified and takes the form “int-expr : int-expr” in a dimension,1

the shadow area having the width specified by the first int-expr at the lower bound and that2

specified by the second one at the upper bound in the dimension are updated. When the width3

clause is specified, and takes the form int-expr, the shadow areas having the same width specified4

at both the upper and lower bounds in the dimension are updated. When the width clause is5

omitted, the whole shadow area of the array is updated.6

In particular, when the /periodic/ modifier is specified in reflect-width, the update of the7

shadow object in the dimension is “periodic,” which means that the shadow object at the global8

lower (upper) bound is treated as if it corresponds to the data object of the global upper (lower)9

bound, and is updated with that value by the reflect construct.10

When the orthogonal clause is specified, only the shadow objects corresponding to elements11

at the orthogonal positions are updated by the reflect construct.12

When the async clause is specified, the statements following this construct may be executed13

before the operation is complete.14

Restrictions15

• The arrays specified by the sequence of array-names must be mapped onto the executing16

node set.17

• The reflect width of each dimension specified by the reflect-width must not exceed the18

shadow width of the arrays.19

• The reflect construct is global, which means that it must be executed by all nodes in20

the current executing node set, and each local variable referenced in the construct must21

have the same value among all of them.22

• async-id must be an expression of type default integer in XcalableMP Fortran or type int23

in XcalableMP C.24

Example25

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp template t(100)

!$xmp distribute t(block) onto p

5 real a(100)

!$xmp align a(i) with t(i)

!$xmp shadow a(1)

...

10 !$xmp reflect (a) width (/periodic/1)

p(1) p(2) p(3) p(4)

a

1 100

Figure 4.2: Example of periodic shadow reflection.

50 CHAPTER 4. DIRECTIVES

The shadow directive allocates “periodic” shadow areas of the array a. The reflect con- 1

struct updates “periodically” the shadow area of a (Figure 4.2). A periodic shadow at the lower 2

bound on the node p(1) is updated with the value of a(100) and that at the upper bound on 3

p(4) with the value of a(1). 4

4.5.2 gmove Construct 5

Synopsis 6

The gmove construct allows an assignment statement, which may cause communication, to be 7

executed possibly in parallel by the executing nodes. 8

Syntax 9

[F] !$xmp gmove [in | out] [async (async-id)]
[C] #pragma xmp gmove [in | out] [async (async-id)]

10

Description 11

This construct copies the value of the right-hand side variable into the left-hand side of the 12

associated assignment statement, which may cause communication between the executing nodes. 13

Such communication is detected, scheduled, and performed by the XcalableMP runtime system. 14

There are three operating modes of the gmove construct: 15

• collective mode 16

When neither the in nor the out clause is specified, the copy operation is performed 17

collectively, and results in implicit synchronization among the executing nodes. 18

If the async clause is not specified, then the construct is “synchronous,” and it is guaran- 19

teed that the left-hand side data can be read and overwritten, the right-hand side data can 20

be overwritten, and all of the operations of the construct on the executing nodes are com- 21

pleted when returning from the construct; otherwise, the construct is “asynchronous,” and 22

it is not guaranteed that the operations are completed, until the associating wait async 23

construct (Section 4.5.6) is completed. 24

• in mode 25

When the in clause is specified, the right-hand side data of the assignment, all or part of 26

which may reside outside the executing node set, can be transferred from its owner nodes 27

to the executing nodes by this construct. 28

If the async clause is not specified, then the construct is “synchronous,” and it is guaran- 29

teed that the left-hand side data can be read and overwritten, and that all of the operations 30

of the construct on the owner nodes of the right-hand side and the executing nodes are com- 31

pleted when returning from the construct; otherwise, the construct is “asynchronous,” and 32

it is not guaranteed that the operations are completed, until the associating wait async 33

construct (Section 4.5.6) is completed. 34

• out mode 35

When the out clause is specified, the left-hand side data of the assignment, all or part of 36

which may reside outside the executing node set, can be transferred from the executing 37

nodes to its owner nodes by this construct. 38

If the async clause is not specified, then the construct is “synchronous,” and it is guar- 39

anteed that the right-hand side data can be overwritten, and that all of the operations of 40

4.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 51

the construct on the owner nodes of the left-hand side and the executing nodes are com-1

pleted when returning from the construct; otherwise, the construct is “asynchronous,” and2

it is not guaranteed that the operations are completed, until the associating wait async3

construct (Section 4.5.6) is completed.4

When the async clause is specified, the statements following this construct may be executed5

before the operation is complete.6

Restrictions7

• The gmove construct must be followed by (i.e., associated with) a simple assignment state-8

ment that contains neither arithmetic operations nor function calls.9

• The gmove construct is global, which means that it must be executed by all nodes in the10

current executing node set, and each local variable referenced in the construct must have11

the same value.12

• If the gmove construct is in the collective mode, then all elements of the distributed arrays13

appearing on both the left-hand side and the right-hand side of the associated assignment14

statement must reside in the executing node set.15

• If the gmove construct is in the inmode, then all elements of the distributed array appearing16

on the left-hand side of the associated assignment statement must reside in the executing17

node set.18

• If the gmove construct is in the out mode, then all elements of the distributed array19

appearing on the right-hand side of the associated assignment statement must reside in20

the executing node set.21

• async-id must be an expression of type default integer in XcalableMP Fortran or type int22

in XcalableMP C.23

Examples24

Example 1: Array assignment If the arrays on both the left-hand side and the right-hand25

side are distributed, then the copy operation is performed using all-to-all communication.26

If the left-hand side is a replicated array, this copy is performed using multi-cast commu-27

nication. If the right-hand side is a replicated array, then no communication is required.28

XcalableMP Fortran
!$xmp gmove

a(:,1:N) = b(:,3,0:N-1)

XcalableMP C
#pragma xmp gmove

a[1:N][:] = b[0:N][3][:];
29

Example 2: Scalar assignment to an array When the right-hand side is an element of a30

distributed array, the copy operation is performed by broadcast communication from the31

owner of the element. If the right-hand side is a replicated array, then no communication32

is required.33

XcalableMP Fortran
!$xmp gmove

a(:,1:N) = c(k)

XcalableMP C
#pragma xmp gmove

a[1:N][:] = c[k]
34

52 CHAPTER 4. DIRECTIVES

Example 3: in mode assignment Because b(3) referenced on the right-hand side of the 1

gmove construct does not reside in the executing node set (p(1:2)), the construct is exe- 2

cuted in the in mode. Thus, b(3) is transferred from its owner node p(3) to the executing 3

node set. 4

Until p(1:2) returns from the construct, there is no gurantee that any node can read and 5

overwrite a(1:2), and that any relevant operations on p(1:2) and p(3) are completed. 6

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp template t(4)

!$xmp distribute t(block) onto p

5 real a(4), b(4)

!$xmp align (i) with t(i) : a, b

...

!$xmp task on p(1:2)

...

10 !$xmp gmove in

a(1:2) = b(2:3)

...

!$xmp end task

4.5.3 barrier Construct 7

Synopsis 8

The barrier construct specifies an explicit barrier at the point at which the construct appears. 9

Syntax 10

[F] !$xmp barrier [on nodes-ref |template-ref]
[C] #pragma xmp barrier [on nodes-ref | template-ref]

11

Description 12

The barrier operation is performed among the node set specified by the on clause. If no on 13

clause is specified, then it is assumed that the current executing node set is specified in it. 14

Note that an on clause may represent multiple node sets. In such a case, a barrier operation 15

is performed in each node set. 16

Restriction 17

• The node set specified by the on clause must be a subset of the executing node set. 18

4.5.4 reduction Construct 19

Synopsis 20

The reduction construct performs a reduction operation among nodes. 21

4.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 53

Syntax1

[F] !$xmp reduction (reduction-kind : variable [, variable]...)
[on node-ref | template-ref] [async (async-id)]

2

where reduction-kind is one of:3

+

*

.and.

.or.

.eqv.

.neqv.

max

min

iand

ior

ieor

4

[C] #pragma xmp reduction (reduction-kind : variable [, variable]...)
[on node-ref | template-ref] [async (async-id)]

5

where reduction-kind is one of:6

+

*

&

|

^

&&

||

max

min

7

Description8

The reduction construct performs a type of reduction operation specified by reduction-kind9

for the specified local variables among the node set specified by the on clause, and it sets10

the reduction results to the variables on each of the nodes. Note that some of the reduction11

operations, namely, FIRSTMAX, FIRSTMIN, LASTMAX, and LASTMIN, which can be specified in the12

reduction clause of the loop directive, cannot be specified in the reduction construct because13

their semantics are not defined for it. The variable specified by variable, which is the target of14

the reduction operation, is referred to as the “reduction variable.” After the reduction operation,15

the value of a reduction variable becomes the same in every node that performs the operation.16

The reduction result is computed by combining the reduction variables on all of the nodes17

using the reduction operator. The ordering of this reduction is unspecified.18

When the async clause is specified, the statements following this construct may be executed19

before the operation is complete.20

When template-ref is specified in the on clause, the operation is performed in a node set21

that consists of nodes onto which the specified template section is distributed. Therefore, before22

the reduction construct is executed, the referenced template must be fixed. When nodes-ref is23

specified in the on clause, the operation is performed in the specified node set. When the on24

clause is omitted, the operation is performed in the executing node set.25

54 CHAPTER 4. DIRECTIVES

Note that an on clause may represent multiple node sets. In such a case, a reduction operation 1

is performed in each node set. 2

Restrictions 3

• The variables specified by the sequence of variables must either not be aligned or must be 4

replicated among nodes of the node set specified by the on clause. 5

• The reduction construct is global, which means that it must be executed by all nodes in 6

the current executing node set, and each local variable referenced in the construct must 7

have the same value. 8

• async-id must be an expression of type default integer in XcalableMP Fortran or type int 9

in XcalableMP C. 10

• The node set specified by the on clause must be a subset of the executing node set. 11

Examples 12

Example 1 13

XcalableMP Fortran
!$xmp reduction(+:s)

!$xmp reduction(max:aa) on t(*,:)

!$xmp reduction(min:bb) on p(10:30)

In the first line, the reduction operation calculates the sum of the scalar variable s in the 14

executing node set, and the result is stored in the variable in each node. 15

The reduction operation in the second line computes the maximum value of the variable 16

aa in each node set onto which each of the template sections specified by t(*,:) is 17

distributed. 18

In the third line, the minimum value of the variable bb in the node set specified by p(10:30) 19

is calculated. This example is equivalent to the following code using the task construct. 20

XcalableMP Fortran
!$xmp task on p(10:30)

!$xmp reduction(min:bb)

!$xmp end task

Example 2 21

XcalableMP Fortran
dimension a(n,n), p(n), w(n)

!$xmp align a(i,j) with t(i,j)

!$xmp align p(i) with t(i,*)

!$xmp align w(j) with t(*,j)

5 ...

!$xmp loop (j) on t(:,j)

do j = 1, n

sum = 0

!$xmp loop (i) on t(i,j) reduction(+:sum)

10 do i = 1, n

sum = sum + a(i,j) * p(i)

end do

4.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 55

w(j) = sum

end do

This code computes the matrix vector product, where a reduction clause is specified for1

the loop construct of the inner loop. This is equivalent to the following code snippet.2

XcalableMP Fortran
!$xmp loop (j) on t(:,j)

do j = 1, n

sum = 0

!$xmp loop (i) on t(i,j)

5 do i = 1, n

sum = sum + a(i,j) * p(i)

end do

!$xmp reduction(+:sum) on t(1:n,j)

w(j) = sum

10 end do

In these cases, the reduction operation on the scalar variable sum is performed for every3

iteration in the outer loop, which may cause a large overhead. To reduce this overhead,4

the reduction clause should be specified in the loop construct for the outer loop. This is5

because the node set in which the reduction operation is performed is determined on the6

basis of its on clause (see 4.4.3), and the on clause of the outer loop construct is different7

from that of the inner one. However, this code can be modified using the reduction8

construct as follows:9

XcalableMP Fortran
dimension a(n,n), p(n), w(n)

!$xmp align a(i,j) with t(i,j)

!$xmp align p(i) with t(i,*)

!$xmp align w(j) with t(*,j)

5 ...

!$xmp loop (j) on t(:,j)

do j = 1, n

sum = 0

!$xmp loop (i) on t(i,j)

10 do i = 1, n

sum = sum + a(i,j) * p(i)

end do

w(j) = sum

end do

15 !$xmp reduction(+:w) on t(1:n,*)

This code performs a reduction operation on the array w only once, which may result in10

faster operation.11

4.5.5 bcast Construct12

Synopsis13

The bcast construct performs broadcast communication from a specified node.14

56 CHAPTER 4. DIRECTIVES

Syntax 1

[F] !$xmp bcast (variable [, variable]...) [from nodes-ref | template-ref]
[on nodes-ref] | template-ref] [async (async-id)]

[C] #pragma xmp bcast (variable [, variable]...) [from nodes-ref | template-ref]
[on nodes-ref | template-ref] [async (async-id)]

2

Description 3

The values of the variables specified by the sequence of variables (called broadcast variables) are 4

broadcasted from the node specified by the from clause (called the source node) to each of the 5

nodes in the node set specified by the on clause. After executing this construct, the values of the 6

broadcast variables become the same as those in the source node. If the from clause is omitted, 7

then the first node, that is, the leading one in Fortran’s array element order, of the node set 8

specified by the on clause is assumed to be a source node. If the on clause is omitted, then it is 9

assumed that the current executing node set is specified in it. 10

When the async clause is specified, the statements following this construct may be executed 11

before the operation is complete. 12

Restrictions 13

• The variables specified by the sequence of variables must either not be aligned or must be 14

replicated among nodes of the node set specified by the on clause. 15

• The bcast construct is global, which means that it must be executed by all nodes in the 16

current executing node set, and each local variable referenced in the construct must have 17

the same value among all of them. 18

• async-id must be an expression of type default integer in XcalableMP Fortran or type int 19

in XcalableMP C. 20

• The node set specified by the on clause must be a subset of the executing node set. 21

• The source node specified by the from clause must belong to the node set specified by the 22

on clause. 23

• The source node specified by the from clause must be one node. 24

4.5.6 wait async Construct 25

Synopsis 26

The wait async construct guarantees that asynchronous communications specified by async-id 27

are complete. 28

Syntax 29

[F] !$xmp wait async (async-id [, async-id]...) [on nodes-ref | template-ref]
[C] #pragma xmp wait async (async-id [, async-id]...) [on nodes-ref | template-ref]

30

Description 31

The wait async construct will block, and therefore statements following it will not be executed, 32

until the completion of all of the asynchronous communications that are specified by async-id’s 33

and issued on the node set specified by the on clause. If an async-id is not associated with any 34

asynchronous communication, the wait async construct ignores it. 35

4.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 57

Restrictions1

• async-id must be an expression of type default integer in XcalableMP Fortran or type int2

in XcalableMP C.3

• async-id must be associated with an asynchronous communication using the async clause4

of a communication construct.5

• The wait async construct is global, which means that it must be executed by all nodes in6

the current executing node set, and each local variable referenced in the construct must7

have the same value among all of them.8

• The node set specified by the on clause must be the same as those of the global constructs9

that initiate the asynchronous communications specified by async-id.10

4.5.7 async Clause11

Synopsis12

The async clause of the reflect, gmove, reduction, and bcast constructs enables the corre-13

sponding communication to be performed asynchronously.14

Description15

Communication corresponding to the construct with an async clause is performed asynchronously,16

that is, it is initiated but not completed, and therefore, statements following it may be executed17

before the communication is complete.18

Example19

XcalableMP Fortran
!$xmp reflect (a) async(1)

S1

!$xmp wait_async(1)

S2

The reflect construct on the first line matches the wait construct on the third line because20

both of their async id evaluate to one. These constructs ensure that statements in S1 can be21

executed before the reflect communication is complete, and no statement in S2 is executed22

until the reflect communication is complete.23

4.5.8 reduce shadow Construct24

Synopsis25

The reduce shadow construct adds values of shadow objects to their reflection source.26

Syntax27

[F] !$xmp reduce shadow (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal] [async (async-id)]

[C] #pragma xmp reduce shadow (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal] [async (async-id)]

28

58 CHAPTER 4. DIRECTIVES

Description 1

The reduce shadow construct adds values of shadow objects of the array specified by array- 2

name to their reflection source. Note that the shadow objects corresponding to elements at the 3

non-orthogonal positions are also added as the default behavior. 4

When the width clause is specified and has the form “int-expr : int-expr” in a dimension, 5

the shadow areas having the width specified by the first int-expr at the lower bound, and that 6

specified by the second one at the upper bound in the dimension are added. When the width 7

clause is specified and has the form int-expr, the shadow areas having the same width specified 8

at both the upper and lower bounds in the dimension are added. When the width clause is 9

omitted, the whole shadow area of the array is added. 10

In particular, when the /periodic/ modifier is specified in reflect-width, the addition of the 11

shadow object in the dimension is “periodic,” which means that the shadow object at the global 12

lower (upper) bound is treated as if it corresponds to the data object of the global upper (lower) 13

bound and is added by the reduce shadow construct. 14

When the orthogonal clause is specified, the shadow object is added only by orthogonal 15

nodes. 16

When the async clause is specified, the statements following this construct may be executed 17

before the operation is complete. 18

Restrictions 19

• The arrays specified by the sequence of array-names must be mapped onto the executing 20

node set. 21

• The width of each dimension specified by reflect-width must not exceed the shadow width 22

of the arrays. 23

• The reduce shadow construct is global, which means that it must be executed by all nodes 24

in the current executing node set, and each local variable referenced in the construct must 25

have the same value among all of them. 26

• async-id must be an expression of type default integer in XcalableMP Fortran or type int 27

in XcalableMP C. 28

Examples 29

XcalableMP Fortran
real rho(n,n)

!$xmp align rho(i,j) with t1(i,j)

!$xmp shadow rho(1:1)

5 real f(m)

integer x(m), y(m)

!$xmp align (k) with t2(k) : f, x, y

!$xmp loop on t2(k)

10 do i = 1, no

ix = x(i)

iy = y(i)

dx = x(i) - ix

dy = y(i) - iy

15 rho(ix ,iy) = rho(ix ,iy) + (1.0-dx)*(1.0-dy)*f(i)

4.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 59

rho(ix+1,iy) = rho(ix+1,iy) + dx *(1.0-dy)*f(i)

rho(ix ,iy+1) = rho(ix ,iy+1) + (1.0-dx)* dy *f(i)

rho(ix+1,iy+1) = rho(ix+1,iy+1) + dx * dy *f(i)

end do

20

!$xmp reduce_shadow (rho)

!$xmp reflect (rho)

Assume that a two-dimensional field rho and m particles are both distributed onto nodes.1

On each node, a contribution of a particle f(k) is added to the nearest grid point of the field2

and its neighbors, which may be in the shadow area on the node. In the last two lines, the3

values of the shadow area from neighboring nodes are added to the corresponding data object,4

and the results are then copied back to the shadow area on the neighboring nodes.5

Chapter 51

Support for the Local-view2

Programming3

This chapter describes the coarray features in XcalableMP, which are based on that of Fortran4

2008. Note that they are also available in XcalableMP C. In addition, this chapter describes5

some directives for the local-view programming.6

The coarray features in Fortran 2008 are extended and integrated into XcalableMP. The7

specifications in this chapter are designed to achieve the following purposes:8

• Upward compatibility to the Fortran 2008 coarray features9

If an XcalableMP Fortran program does not contain any XMP directives, any standard-10

conforming Fortran 2008 program remains standard conforming under XcalableMP. In this11

sense, the interpretations and extensions defined in this chapter are upward compatible12

with the Fortran International Standard, ISO/IEC 1539-1:2010 (Fortran 2008).13

• Support for task parallelism14

XcalableMP makes it possible to construct a task parallel program by combining multiple15

Fortran 2008 codes, which may be developed independently, with minimum modifications.16

• Integration of global-view style programming and local-view style programming17

In XcalableMP, users can appropriately use global-view style programming of XcalableMP18

or local-view style programming, which is typically used in MPI or Fortran 2008 programs,19

according to the characteristics of the code in a program.20

• Possibility of support for multiple topologies of a computing system21

An XcalableMP processor may allow users to specify the correspondence between node22

arrays and the topologies of a computing system, and to exploit the full potential of a23

particular system.24

5.1 Rules Determining Image Index25

This section defines how the image index of an image in a set of images is determined in26

association with a node array and a task construct.27

5.1.1 Primary Image Index28

Every image has a default image index in all of the images at the invocation of a program. In29

XcalableMP, the default image index is the primary image index, and is an integer value that30

ranges from one to the number of images at the invocation of a program.31

61

62 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

A primary node array corresponds to all of the images at the invocation of a program, and 1

it also corresponds to all of the nodes at the invocation of a program. The primary image index 2

of an image is the (Fortran) subscript order value of the uniquely corresponding element of a 3

primary node array. 4

5.1.2 Image Index Determined by a task Directive 5

The execution of a task directive determines that a set of nodes (and the corresponding set 6

of images) forms an executing node set. If a name of a node array or a subobject of a node 7

array appears in the task directive, the nodes and the corresponding images in the executing 8

node set are ordered in (Fortran) array element order in the node array or the subobject of the 9

node array. If a name of a template array or a subobject of a template array appears in the 10

task directive, the nodes and the corresponding images in the executing node set are ordered 11

in (Fortran) array element order in the corresponding subobject of the node array. The image 12

index of an image in the determined set of images is the integer order value in the range one to 13

the cardinality of the set of images. 14

5.1.3 Current Image Index 15

The image index of an image in the current set of images is the current image index. 16

A current executing node array corresponds to the current set of images and also the current 17

executing node set at the evaluation of the declaration of the node array. Each image in the 18

current set of images corresponds to the element of an executing node array whose subscript order 19

value is the same as the current image index of the image when the evaluation of the declaration 20

of the executing node array is being evaluated. In particular, when all task directive constructs 21

are completed, the current image index of an image is the same as the primary image index. 22

5.1.4 Image Index Determined by a Non-primary Node Array 23

A non-primary node array corresponds to all of the images at the invocation of a program, and 24

it also corresponds to all the nodes at the invocation of a program. The correspondence between 25

each image and each element of a non-primary node array is processor dependent. A processor 26

may support any means to specify the correspondence. 27

The image index of an image in all of the images at the invocation of a program is the 28

subscript order value of the corresponding element of a non-primary node array. This is the 29

case if and only if the current set of images corresponds to the non-primary node whole array in 30

which the nodes in the executing node set are ordered in (Fortran) array-element order in the 31

non-primary node whole array. The image index is a non-primary image index. 32

The correspondence between the primary image index and a non-primary image index of 33

the same image is processor dependent. Between any two distinct non-primary node arrays, the 34

correspondence between a non-primary image index and the other non-primary image index of 35

the same image is processor dependent unless they have the same shape. If two non-primary 36

node arrays have the same shape, the corresponding elements of the node arrays correspond to 37

the same image. 38

5.1.5 Image Index Determined by an Equivalenced Node Array 39

A nodes directive with “=node-ref” that is not “=*” or “=**” specifies that each element of 40

the declared node array corresponds in (Fortran) array-element order to that of the node-ref, 41

which is the name of a node array or a subobject of a node array. The nodes in the declared 42

node array and the corresponding images are ordered in (Fortran) array-element order in the 43

5.2. BASIC CONCEPTS 63

node-ref. The image index of an image in the set of images corresponding to the declared node1

array is the integer order value ranging from one to the cardinality of the set of images.2

5.1.6 On-node Image Index3

XcalableMP supports the coarray directive and the image directive to specify that an image4

index indicates the image corresponding to the element of a particular node array whose subscript5

order value is the same as the image index. The image index is an on-node image index for the6

specified node array. Because an evaluation of the declaration of a node array determines a set7

of images corresponding to the node array, the directives specify that the set of images is the8

“all images” for the image indices affected by the directives. In particular, the on-node image9

index for a primary node array is the primary image index.10

5.2 Basic Concepts11

In XcalableMP, “all images” in Fortran 2008 changes coupled with the execution of task con-12

structs, and refers to the current set of images. In particular, when an allocate statement is13

executed for which an allocate-object is a coarray, there is an implicit synchronization of all the14

images in the current set of images. On each image in the current set of images, execution of the15

segment following the statement is delayed until all other images in the set have executed the16

same statement the same number of times. When a deallocate statement is executed for which17

an allocate-object is a coarray, there is an implicit synchronization of all the images in the current18

set of images. On each image in the current set of images, execution of the segment following19

the statement is delayed until all other images in the set have executed the same statement the20

same number of times.21

• When an allocatable coarray is allocated during the execution of task constructs, the22

coarray shall be subsequently deallocated before the completion of the task construct23

whose task directive is the most recently executed one in the task constructs that are not24

completed at the allocation.25

The image index determined by an image selector indicates the current image index by26

default. Coarrays are visible within the range of the “all images,” and are accessed using the27

current image index by default. The image index that appears in an executable statement28

indicates the current image index by default.29

5.2.1 Examples30

• In the following code fragment, the value of a coarray b on the images 1, 2, 3, and 4,31

which constitute the executing node set and correspond to node(5), node(6), node(7),32

and node(8) respectively, is defined with the value of the coarray a on node(5).33

XcalableMP Fortran
program xmpcoarray

!$xmp nodes node(8)=** ! A primary node array.

!$xmp task on node(5:8) ! The executing node set

call sub ! corresponds to node(5:8).

5 !$xmp end task

end

subroutine sub

real, save :: a[*], b[*] ! The images 1, 2, 3,

64 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

10 : ! and 4 correspond to node(5:8),

b = a[1] ! respectively.

• In the following code fragment, an allocatable coarray a is allocated on the images 1, 2, 1

3, and 4, which constitute the executing node set and correspond to node(5), node(6), 2

node(7), and node(8), respectively. 3

XcalableMP Fortran
program xmpcoarray

!$xmp nodes node(8)=**

!$xmp task on node(5:8) ! The executing node set

call sub2 ! corresponds to node(5:8).

5 !$xmp end task

end

subroutine sub2

real, allocatable :: a(:)[:]

10 :

allocate(a(0:99)[*])

Note 4

• The result of xmp num nodes() is always the same as that of NUM IMAGES(). 5

• The result of xmp node num() is always the same as that of THIS IMAGE(). 6

• In a read statement, an io-unit that is an asterisk identifies an external unit that is 7

preconnected for a sequential formatted input only on the image whose primary image 8

index is one. 9

5.3 coarray Directive 10

5.3.1 Purpose and Form of the coarray Directive 11

The coarray directive maps coarrays onto a node array and the set of images that corresponds 12

to the node array. An image index determined by an image selector for a coarray that appears 13

in a coarray directive always indicates the on-node image index for the node array; that is, the 14

specified image corresponds to the node whose subscript order value in the node array is the 15

same as the image index. 16

A coarray appearing in a coarray directive is an on-node coarray of the node array that is 17

specified in the coarray directive. 18

[F] !$xmp coarray on node-name :: object-name-list

[C] #pragma xmp coarray on node-name :: object-name-list
19

• An object-name shall be a name of a coarray declared in the same scoping unit. 20

• The same object-name shall not appear more than once in coarray directives in a scoping 21

unit. 22

5.3. COARRAY DIRECTIVE 65

• If an object-name is a name of an allocatable object, the current set of images at the1

allocation and the deallocation of the object shall correspond to the node array specified2

as the node-name, and the current image index of each image shall be the same as the3

subscript order value of the corresponding element of the node array.4

• If an object-name is the name of an allocated allocatable dummy argument, the set of5

images onto which it is mapped shall be a subset of the set of images that has most6

recently allocated the corresponding argument in the chain of argument associations.7

• If an object-name is the name of a nonallocatable dummy argument whose ultimate argu-8

ment has an allocatable attribute, the set of images onto which the object-name is mapped9

shall be a subset of the set of images that has most recently allocated the corresponding10

argument in the chain of argument associations.11

• The image index determined by an image selector for an on-node coarray shall be within12

the range of one to the size of the node array onto which the on-node coarray is mapped.13

• THIS IMAGE(COARRAY[,DIM]) shall be invoked by the image contained in the set of14

images onto which the COARRAY argument is mapped if the COARRAY argument ap-15

pears in a coarray directive.16

Note17

• The result value of THIS IMAGE(COARRAY) is the sequence of cosubscript values for the18

COARRAY argument that would specify the current image index of the invoking image,19

if the COARRAY argument does not appear in a coarray directive. The result value20

of THIS IMAGE(COARRAY) is the sequence of cosubscript values for the COARRAY21

argument that would specify the on-node image index of the invoking image for the node22

array onto which the COARRAY argument is mapped if the COARRAY argument appears23

in a coarray directive.24

• The result value of THIS IMAGE(COARRAY,DIM) is the value of cosubscript DIM in25

the sequence of cosubscript values for the COARRAY argument that would specify the26

current image index of the invoking image if the COARRAY argument does not appear in27

a coarray directive. The result value of THIS IMAGE(COARRAY,DIM) is the value of28

cosubscript DIM in the sequence of cosubscript values for the COARRAY argument that29

would specify the on-node image index of the invoking image for the node array onto which30

the COARRAY argument is mapped if the COARRAY argument appears in a coarray31

directive.32

5.3.2 An Example of the coarray Directive33

XcalableMP Fortran
module global

!$xmp nodes node(8)=**

real s[*] ! The coarray s is always

!$xmp coarray on node :: s ! visible on node(1:8).

5 end global

program coarray

use global

!$xmp task on node(5:8) ! The executing node set

10 call sub ! consists of node(5:8).

66 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

!$xmp end task

end

subroutine sub

15 use global

real, save :: a[*] ! The images 1, 2, 3, and 4

: ! correspond to node(5:8), respectively.

if(this_image().eq.1)then ! The value of the coarray a on node(5)

s[1] = a ! defines that of the coarray s on node(1)

20 endif

5.4 image Directive 1

5.4.1 Purpose and Form of the image Directive 2

The image directive specifies that an image index in the following executable statement indicates 3

the on-node image index of the node array specified in the image directive unless the image index 4

is determined by an image selector. 5

The image directive also specifies that the execution of a sync all statement performs a 6

synchronization of all of the images corresponding to the node array specified in the image 7

directive. 8

[F] !$xmp image (node-name)

[C] #pragma xmp image (node-name)

9

• An image directive shall be followed by a sync all statement, an image control statement 10

that contains image-set, or a reference to an intrinsic procedure that has IMAGES argument. 11

5.4.2 An Example of the image Directive 12

XcalableMP Fortran
module global

!$xmp nodes node(8)=**

real s[*] ! The coarray s is always visible

!$xmp coarray on node :: s ! on node(1:8).

5 end global

program image

use global

!$xmp tasks

10 !$xmp task on node(1:4)

call subA ! The executing node set consists of node(1:4).

!$xmp end task

!$xmp task on node(5:8)

call subB ! The executing node set consists of node(5:8).

15 !$xmp end task

!$xmp end tasks

end

5.5. IMAGE INDEX TRANSLATION INTRINSIC PROCEDURES 67

subroutine subA

20 use global

real, save :: a[*] ! The images 1, 2, 3, and 4

: ! correspond to node(1:4), respectively.

!$xmp image(node) ! Synchronization between node(1:4) and

sync images(5) ! node(5).

25 a = s[1] ! a on node(1:4) is defined using

: ! the value of s on node(1).

end subroutine

subroutine subB

30 use global

real, save :: b[*] ! The images 1, 2, 3, and 4

: ! correspond to node(5:8), respectively.

if(this_image() .eq. 1)then ! The image 1 indicates node(5).

s[1] = b ! s on node(1) is defined using the value of

35 ! b on node(5).

!$xmp image(node) ! Synchronization between

sync images((/1,2,3,4/)) ! node(5) and node(1:4).

endif

:

40 end subroutine

5.5 Image Index Translation Intrinsic Procedures1

XcalableMP supports intrinsic procedures to translate image indices between different sets of2

images.3

5.5.1 Translation to the Primary Image Index4

xmp get primary image index(NUMBER,INDEX,PRI INDEX,NODE DESC)5

Description. Translate image indices to the primary image indices.6

Class. Subroutine.7

Arguments.8

NUMBER shall be a scalar of type default integer. It is an INTENT(IN) argument.9

INDEX shall be a rank-one array of type default integer. The size of INDEX shall be10

greater than or equal to the value of NUMBER. It is an INTENT(IN) argument.11

The value of each element of INDEX shall be within the range one to the size of the12

node array specified in NODE DESC if NODE DESC appears. The value of each13

element of INDEX shall be within the range one to the cardinality of the current14

set of images if NODE DESC does not appear.15

PRI INDEX shall be a rank-one array of type default integer. The size of PRI INDEX16

shall be greater than or equal to the value of NUMBER. It is an INTENT(OUT)17

argument. If NODE DESC appears, PRI INDEX(i) is assigned the primary im-18

age index corresponding to the element of the node array specified in NODE DESC19

whose subscript order value is INDEX(i); otherwise, PRI INDEX(i) is assigned20

68 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

the primary image index corresponding to the image whose current image index is 1

INDEX(i). 2

NODE DESC (optional) shall be a descriptor of a node array. It is an INTENT(IN) 3

argument. NODE DESC shall appear in XcalableMP C. 4

Example. In the following code fragment, the value of index(1:4) is (/5,6,7,8/). 5

XcalableMP Fortran
!$xmp nodes node(1:8)=** ! A primary node array

!$xmp nodes subnode(4)=node(5:8)

integer index(4)

call xmp_get_primary_image_index&

5 &(4,(/1,2,3,4/),index,xmp_desc_of(subnode))

5.5.2 Translation to the Current Image Index 6

xmp get image index(NUMBER,INDEX,CUR INDEX,NODE DESC) 7

Description. Translate image indices to the current image indices. 8

Class. Subroutine. 9

Arguments. 10

NUMBER shall be a scalar of type default integer. It is an INTENT(IN) argument. 11

INDEX shall be a rank-one array of type default integer. The size of INDEX shall be 12

greater than or equal to the value of NUMBER. It is an INTENT(IN) argument. 13

The value of each element of INDEX shall be within the range one to the size of the 14

node array specified in NODE DESC. 15

CUR INDEX shall be a rank-one array of type default integer. The size ofCUR INDEX 16

shall be greater than or equal to the value of NUMBER. It is an INTENT(OUT) 17

argument. If the current image index corresponding to the element of the node- 18

array specified in NODE DESC whose subscript order value is INDEX(i) exists, 19

CUR INDEX(i) is assigned the current image index; otherwise, CUR INDEX(i) 20

is assigned zero. 21

NODE DESC shall be a descriptor of a node array. It is an INTENT(IN) argument. 22

Example. In the following code fragment, the value of index(1:4) is (/1,2,3,4/). 23

XcalableMP Fortran
!$xmp nodes node(1:8)=**

integer index(4)

!$xmp task on node(5:8)

call xmp_get_image_index&

5 &(4,(/5,6,7,8/),index,xmp_desc_of(node))

!$xmp end task

5.6 Examples of Communication between Tasks 24

• In the following program fragment, two tasks communicate with each other with synchro- 25

nization. 26

5.6. EXAMPLES OF COMMUNICATION BETWEEN TASKS 69

XcalableMP Fortran
module nodes

!$xmp nodes node(8)=** ! A primary node array

integer, parameter :: n=2

!$xmp nodes subnodeA(n)=node(1:n) ! subnodeA is for taskA.

5 !$xmp nodes subnodeB(8-n)=node(n+1:8) ! subnodeB is for taskB.

endmodule

module intertask

use nodes

10 real,save :: dA[*],dB[*]

endmodule

use nodes

!$xmp tasks

15 !$xmp task on subnodeA ! The taskA is invoked on subnodeA.

call taskA

!$xmp end task

!$xmp task on subnodeB ! The taskB is invoked on subnodeB.

call taskB

20 !$xmp end task

!$xmp end tasks

end

subroutine taskA

25 use intertask

:

me = this_image() ! The value of me is i on subnodeA(i).

if(me.eq.1)then

call xmp_get_primary_image_index& ! The value of iyouabs

30 &(1,(/1/),iyouabs,subnodeB) ! is n+1.

!$xmp image(node) ! Synchronization between

sync images(iyouabs) ! node(1) and node(n+1).

call exchange(dA,dB,iyouabs)

!$xmp image(node) ! Synchronization between

35 sync images(iyouabs) ! node(1) and node(n+1).

endif

sync all ! Synchronization within subnodeA.

if(me.ne.1)dA = dA[1]

sync all ! Synchronization within subnodeA.

40 :

end

subroutine taskB

use intertask

45 :

me = this_image() ! The value of me is i on subnodeB(i).

if(me.eq.1)then

call xmp_get_primary_image_index& ! The value of iyouabs

&(1,(/1/),iyouabs,subnodeA) ! is 1.

70 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

50 !$xmp image(node) ! Synchronization between

sync images(iyouabs) ! node(n+1) and node(1).

call exchange(dB,dA,iyouabs)

!$xmp image(node) ! Synchronization between

sync images(iyouabs) ! node(n+1) and node(1).

55 endif

sync all ! Synchronization within subnodeB.

if(me.ne.1)dB = dB[1]

sync all ! Synchronization within subnodeB.

60 end

subroutine exchange(mine,yours,iput)

use nodes

real :: mine[*],yours[*] ! mine and yours are always

65 !$xmp coarray on node :: mine,yours ! visible on node(1:8).

yours[iput] = mine ! node(1) puts mine to yours[n+1] and

! node(n+1) puts mine to yours[1].

end

• In the following program fragment, two tasks communicate with each other without one- 1

to-one synchronization. 2

XcalableMP Fortran
!$xmp nodes node(8)=** ! A primary node array

:

!$xmp tasks

!$xmp task on(node(1:n))

5 call taskA(n) ! The taskA is invoked on node(1:n)

!$xmp end task

!$xmp task on(node(n+1:8))

call taskB(8-n) ! The taskB is invoked on node(n+1:8)

!$xmp end task

10 !$xmp end tasks

end

subroutine taskA(n)

real,save :: yours[*],mine[*]

15 !$xmp nodes subnode(n)=* ! An executing node array

me = this_image()

if(me.eq. NUM_IMAGES())then

call xmp_get_primary_image_index(1,me,meabs) ! meabs=n.

20 call exchange(yours,mine,meabs,meabs+1,NUM_IMAGES())

endif

sync all ! Synchronization within node(1:n).

if(me.ne.NUM_IMAGES())mine = mine[NUM_IMAGES()]

sync all ! Synchronization within node(1:n).

25 end

5.7. [C] COARRAYS IN XCALABLEMP C 71

subroutine taskB(m)

real,save :: yours[*],mine[*]

!$xmp nodes subnode(m)=* ! An executing node array

30

me = this_image()

if(me.eq.1)then

call xmp_get_abs_image_index(1,me,meabs) ! meabs=n+1.

call exchange(yours,mine,meabs,meabs-1,NUM_IMAGES())

35 endif

sync all ! Synchronization within node(n+1:8).

if(me.ne.1)mine = mine[1]

sync all ! Synchronization within node(n+1:8).

end

40

subroutine exchange(yours,mine,meabs,iyouabs,nnodes)

USE, INTRINSIC :: ISO_FORTRAN_ENV

real :: yours[*],mine[*]

real, save :: s[*] ! only for exchage.

45 TYPE(LOCK_TYPE),save :: lock[*] ! for lock.

!$xmp nodes subnode(nnodes)=* ! An executing node array.

!$xmp nodes node(8)=** ! The coarrays s and lock are

!$xmp coarray on node :: s,lock ! always visible on node(1:8).

50 LOCK(lock[meabs]) ! node(n) puts yours[n] to s[n] and

s[meabs] = yours ! node(n+1) puts yours[n+1] to s[n+1].

UNLOCK(lock[meabs])

LOCK(lock[iyouabs]) ! node(n) gets s[n+1] into mine[n] and

55 mine = s[iyouabs] ! node(n+1) gets s[n] into mine[n+1].

UNLOCK(lock[iyouabs])

end

5.7 [C] Coarrays in XcalableMP C1

This section describes the coarray features for XcalableMP C.2

5.7.1 [C] Declaration of Coarrays3

Synopsis4

Coarrays are declared in XcalableMP C.5

Syntax6

[C] data-type variable : codimensions7

where codimensions is:8

[[int-expr]...][*]9

72 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

Description 1

For XcalableMP C, coarrays are declared with a colon and square bracket, where codimensions 2

specify the coshape of a variable. 3

Note that the coarray directive for defining a coarray in the XcalableMP specification 1.0 4

(page 49) is obsolete. 5

Restrictions 6

• A coarray variable must have a global scope. 7

Examples 8

XcalableMP C
#pragma xmp nodes p[16]

float x:[*];

A variable x that has a global scope is declared as a coarray. 9

5.7.2 [C] Reference of Coarrays 10

Synopsis 11

A coarray can be directly referenced or defined by any node. The target node is specified using 12

an extended notation in XcalableMP C. 13

Syntax 14

[C] variable : [int-expr]... 15

Description 16

A sequence of [int-expr]’s preceded by a colon in XcalableMP C determines the image index 17

for a coarray to be accessed. Note that the image index in XcalableMP C is 0-origin while the 18

image index in XcalableMP Fortran is 1-origin. 19

A reference of coarrays can appear in the same place as an reference of normal variables in 20

the base languages. 21

Examples 22

In the following codes, the second image ([C] image index 1/[F] image index 2) gets all values 23

of array B on the first image ([C] image index 0/[F] image index 1) to array A on the second 24

image. 25

XcalableMP C
int A[100]:[*], B[100]:[*];

if(xmpc_this_image() == 1){

A[:] = B[:]:[0];

5 }

XcalableMP Fortran
integer :: A(100)[*], B(100)[*]

if (this_image() == 2) then

A(:) = B(:)[1]

end if 5

26

5.7.3 [C] Synchronization of Coarrays 27

Synopsis 28

XcalableMP C provides synchronization functions for coarrays. 29

5.8. DIRECTIVES FOR THE LOCAL-VIEW PROGRAMMING 73

Format1

[C] void xmp sync all(int* status)
[C] void xmp sync memory(int* status)
[C] void xmp sync image(int image, int* status)
[C] void xmp sync images(int num, int* image set, int* status)
[C] void xmp sync images all(int* status)

2

Description3

• xmp sync all is equivalent to the sync all statement in Fortran 2008.4

• xmp sync memory is equivalent to the sync memory statement in Fortran 2008.5

• A combination of xmp sync image, xmp sync images, and xmp sync images all is equiv-6

alent to the sync images statement in Fortran 2008.7

– xmp sync image is to synchronize one image.8

– xmp sync images is to synchronize some images.9

– xmp sync images all is to synchronize all images.10

Arguments11

• The argument status is defined with one of the follow symbolic constants.12

– XMP STAT SUCCESS13

– XMP STAT STOPPED IMAGE14

If an execution of the function is successful, the status is defined using XMP STAT SUCCESS.15

The condition where the status is defined using XMP STAT STOPPED IMAGE is the same16

as that where the status is defined using STAT STOPPED IMAGE in Fortran 2008. These17

symbolic constants are defined in “xmp.h.” If any other error condition occurs during the18

execution of these functions, the status is defined with a value that is different from the19

value of XMP STAT SUCCESS and XMP STAT STOPPED IMAGE.20

• In xmp sync image, the variable image determines a target image index.21

• In xmp sync images, the variable num is a number of target images, and the variable22

image set is an array in which the target image set is defined.23

5.8 Directives for the Local-view Programming24

5.8.1 [F] local alias Directive25

Synopsis26

In XcalableMP Fortran, the local alias directive declares a local data object as an alias to27

the local section of a mapped array.28

Syntax29

[F] !$xmp local alias local-array-name => global-array-name30

74 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

Description 1

The LOCAL ALIAS directive associates a non-mapped array with an explicitly mapped array. 2

The non-mapped array is an associating local array and the explicitly mapped array is an 3

associated global array. The shape of the associating local array is the same as that of the 4

node-local portion of the associated global array including the shadow area. Each element 5

of the associating local array shares the same storage unit in array-element order with that 6

of the node-local portion of the associated global array. An associating local array and the 7

corresponding global array always have the same allocation status. An associating local array 8

always has the dynamic type and type parameter values of the corresponding associated global 9

array. 10

An associating local array may be a coarray. An associating local array that is a coarray is 11

an on-node coarray of the node array onto which the corresponding associated global array is 12

mapped. All specifications and restrictions on coarrays are also applied to an associating local 13

array that is a coarray, with the exception that an associating local array is always declared 14

with assumed-shape-spec-list of the same rank as the associated global array. In particular, a 15

processor shall ensure that an associating local array that is a coarray has the same bounds on 16

all the images corresponding to the node array onto which the corresponding associated global 17

array is mapped. The mapping attributes that are allowed for an associated global array are 18

processor dependent. 19

Note that the base language Fortran is extended so that a deferred-shape array that is neither 20

an allocatable array nor an array pointer is declared if it is specified as a local-array-name in 21

the local alias directive. 22

In XcalableMP C, the address-of operator is applied to global data substitutes for the 23

local alias directive (see 3.4). 24

Restrictions 25

• A global-array-name shall be the name of an explicitly mapped array declared in the same 26

scoping unit. 27

• A local-array-name shall be the name of a non-mapped array declared in the same scoping 28

unit. 29

• A local-array-name shall not be a dummy argument. 30

• An associating local array shall have the declared type and type parameters of the corre- 31

sponding associated global array. 32

• An associating local array shall be declared with assumed-shape-spec-list of the same rank 33

as the corresponding associated global array. 34

• A local-array-name shall appear in a coarray directive in the same scoping unit and the 35

node-name in the coarray directive shall be the name of the node array onto which the 36

associated global array is mapped. 37

• If an associated global array is a dummy argument and corresponds to an associating 38

local array that is a coarray, the corresponding effective argument shall be an explicitly 39

mapped array or a subobject of an explicitly mapped array whose name appears in a 40

LOCAL ALIAS directive, and the corresponding associating local array shall be a coarray. 41

• If a dummy argument is a coarray and the corresponding ultimate argument is a coarray 42

appearing in a LOCAL ALIAS directive, the dummy argument shall appear in a COAR- 43

5.8. DIRECTIVES FOR THE LOCAL-VIEW PROGRAMMING 75

RAY directive with a node array corresponding to a subset of the set of images that1

corresponds to the node array onto which the ultimate argument is mapped.2

Examples3

Example 14

XcalableMP Fortran
!$xmp nodes n(4)

!$xmp template :: t(100)

!$xmp distribute (block) onto n :: t

5 real :: a(100)

!$xmp align (i) with t(i) :: a

!$xmp shadow (1) :: a

real :: b(:)

10 !$xmp local_alias b => a

The array a is distributed by block onto four nodes. The node n(2) has its local section of5

25elements (a(25:50)) with shadow areas of size one on both the upper and lower bounds.6

The local alias b is an array of 27 elements (b(1:27)) on n(2). The table below shows7

the correspondence of each element of a to that of b on n(2).8

a b

lower shadow 1

26 2

27 3

28 4

.

50 26

upper shadow 27

9

Example 210

XcalableMP Fortran
!$xmp nodes n(4)

!$xmp template :: t(100)

!$xmp distribute (cyclic) onto n :: t

5 real :: a(100)

!$xmp align (i) with t(i) :: a

real :: b(0:)

!$xmp local_alias b => a

An array a is distributed cyclically onto four nodes. Node n(2) has its local section of11

25 elements (a(2:100:4)). The lower bound of local alias b is declared to be zero. As a12

result, b is an array of size 25 whose lower bound is zero (b(0:24)) on n(2). The table13

below shows the correspondence of each element of a to that of b on n(2).14

76 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

a b

2 0

6 1

10 2

.

98 24

1

Example 3 2

XcalableMP Fortran
!$xmp nodes n(4)

!$xmp template :: t(:)

!$xmp distribute (block) onto n :: t

5 real, allocatable :: a(:)

!$xmp align (i) with t(i) :: a

real :: b(:)[*]

!$xmp local_alias b => a

10

…

!$xmp template_fix :: t(128)

15 allocate (a(128))

if (me < 4) b(4) = b(4)[me +1]

Because the global array a is an allocatable array, its local alias b is not defined when the 3

subroutine starts execution. b is defined when a is allocated at the allocate statement. 4

Note that b is declared as a coarray, and can therefore be accessed in the same manner as 5

a normal coarray. 6

5.8.2 post Construct 7

Synopsis 8

The post construct, in combination with the wait construct, specifies the point-to-point syn- 9

chronization. 10

Syntax 11

[F] !$xmp post (nodes-ref, tag)

[C] #pragma xmp post (nodes-ref, tag)
12

Description 13

This construct ensures that the execution of statements that precede it is completed before 14

statements that follow the matching wait construct start are executed. 15

A post construct issued with the arguments of nodes-ref and tag on a node (called a posting 16

node) dynamically matches at most one wait construct issued with the arguments of the posting 17

node (unless omitted) and the same value as tag (unless omitted) by the node specified by nodes- 18

ref. 19

5.8. DIRECTIVES FOR THE LOCAL-VIEW PROGRAMMING 77

Restriction1

• nodes-ref must represent one node.2

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in3

XcalableMP C.4

Example5

Example 16

XcalableMP Fortran
S1

!$xmp post (p(2), 1)

XcalableMP Fortran
!$xmp wait (p(1), 1)

S2
7

It is assumed that the code of the left is executed by the node p(1), while that on the8

right is executed by node p(2).9

The post construct on the left matches the wait construct on the right because their nodes-10

refs represent each other and both tags’s have the same value of one. These constructs11

ensure that no statement in S2 is executed by p(2) until the execution of all statements12

in S1 is completed by p(1).13

Example 214

XcalableMP Fortran
!$xmp wait

S3

It is assumed that this code is executed by node p(2).15

The post construct in the left code in Example 1 may match this wait construct because16

both nodes-ref and tag are omitted in this wait construct.17

5.8.3 wait Construct18

Synopsis19

The wait construct, in combination with the post construct, specifies a point-to-point synchro-20

nization.21

Syntax22

[F] !$xmp wait [(nodes-ref [, tag])]
[C] #pragma xmp wait [(nodes-ref [, tag])]

23

Description24

This construct prohibits statements that follow from being executed until the execution of all25

statements preceding a matching post construct is completed on the node specified by node-ref.26

A wait construct that is issued with the arguments of nodes-ref and tag on a node (called a27

waiting node) dynamically matches a post construct issued with the arguments of the waiting28

node and the same value as tag by the node specified by nodes-ref.29

If tag is omitted, then the wait construct can match a post construct that is issued with30

the arguments of the waiting node and any tag by the node specified by nodes-ref. If both tag31

and nodes-ref are omitted, then the wait construct can match a post construct that is issued32

with the arguments of the waiting node and any tag on any node.33

78 CHAPTER 5. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

Restriction 1

• nodes-ref must represent one node. 2

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in 3

XcalableMP C. 4

5.8.4 [C] lock/unlock Construct 5

Synopsis 6

The lock/unlock constructs are equivalent to the lock/unlock statements in Fortran 2008. 7

Syntax 8

[C] #include <xmp.h>
[C] xmp lock t lock-object [, lock-object]...
[C] #pragma xmp lock (lock-object) [acquired lock (success)] [stat (status)]
[C] #pragma xmp unlock (lock-object) [stat (status)]

9

Please note the following points: 10

• The type xmp lock t is defined in “xmp.h”. 11

• The variable lock-object is a coarray. 12

• The variable success is an expression of type int. 13

• The variable status is an expression of type int. 14

Description 15

The lock construct, in combination with the unlock construct, is used to control a lock-object. 16

The lock-object must be defined as a coarray to control it on a target node. The lock-object must 17

be an expression of type xmp lock t, which is an opaque object defined in “xmp.h”. 18

If the acquired lock clause is not used in the lock construct and the lock-object is locked, 19

the node stops at the lock construct until the lock-object is unlocked by a different node. If the 20

acquired lock clause is used in the lock construct and the lock-object is locked by a different 21

node, the node does not stop at the lock construct and the variable success is defined with 22

the value false; lock construct leaves the lock-object unchanged. If the acquired lock clause is 23

used in the lock construct and the lock-object is unlocked, the variable success is defined with 24

the value true. 25

The status is defined with one of the follow symbolic constants when executing the lock/unlock 26

construct. 27

• XMP STAT SUCCESS 28

• XMP STAT LOCKED 29

• XMP STAT UNLOCKED 30

• XMP STAT LOCKED OTHER IMAGE 31

If the execution of the lock/unlock construct is successful, the status is defined with 32

XMP STAT SUCCESS. The condition where the status is defined with XMP STAT LOCKED, XMP STAT UNLOCKED,33

or XMP STAT LOCKED OTHER IMAGE is the same as that where the status is defined with STAT LOCKED, 34
STAT UNLOCKED, or STAT LOCKED OTHER IMAGE in Fortran 2008. These symbolic constants are 35

defined in “xmp.h”. If any other error condition occurs during the execution of these con- 36

structs, the status is defined with a value that is different from the value of XMP STAT SUCCESS, 37

XMP STAT LOCKED, XMP STAT UNLOCKED, and XMP STAT LOCKED OTHER IMAGE. 38

5.8. DIRECTIVES FOR THE LOCAL-VIEW PROGRAMMING 79

Example1

XcalableMP C
#include "xmp.h"

xmp_lock_t lock_obj:[*];

int A:[*], B;

5 #pragma xmp nodes p[2]

...

#pragma xmp lock(lock_obj:[2])

if(xmp_node_num() == 1){

A:[2] = B;

10 }

#pragma xmp unlock(lock_obj:[2])

Chapter 61

Procedure Interfaces2

This chapter describes the procedure interfaces, that is, how procedures are invoked and argu-3

ments are passed, in XcalableMP.4

In order to achieve high composability of XcalableMP programs, it is one of the most im-5

portant requirement that XcalableMP procedures can invoke procedures written in the base6

language with as few restrictions as possible.7

6.1 General Rule8

In XcalableMP, a procedure invocation is itself a local operation, and does not cause any com-9

munication or synchronization at runtime. Thus, a node can invoke any procedure, whether10

written in XcalableMP or in the base language, at any point during the execution. There is no11

restriction on the characteristics of procedures invoked by an XcalableMP procedure, except for12

a few ones on its argument, which are explained below.13

Local data in the actual or dummy argument list (referred to as a local actual argument14

and a local dummy argument, respectively) are treated by the XcalableMP compiler in the same15

manner as the compiler of the base language. This rule makes it possible for a local actual16

argument in a procedure written in XcalableMP to be associated with a dummy argument of a17

procedure written in the base language.18

If both an actual argument and its associated dummy argument are coarrays, they must be19

declared on the same node set.20

Implementation The XcalableMP compiler does not transform either local actual or dummy21

arguments, so the backend compiler of the base language can treat them in its usual way.22

The rest of this chapter specifies how global data appearing in an actual and/or dummy argument23

list (referred to as a global actual argument and a global dummy argument, respectively) are24

processed by the XcalableMP compiler.25

6.2 Argument Passing Mechanism in XcalableMP Fortran26

Either of the following global data can be put in the actual argument list:27

• an array name;28

• an array element; or29

• an array section that satisfies both of the following conditions:30

81

82 CHAPTER 6. PROCEDURE INTERFACES

– its subscript list is a list of zero or more colons (“:”) followed by zero or more 1

int-expr’s; 2

– the subscript of the dimension having a shadow is int-expr unless it is the last dimen- 3

sion. 4

There are two kinds of argument association for global data in XcalableMP Fortran: one 5

is sequence association, which is for global dummies that are an explicit-shape or assumed-size 6

array, and the other is descriptor association, which is for all other. 7

6.2.1 Sequence Association of Global Data 8

The concept of sequence association in Fortran is extended for global actual and dummy argu- 9

ments in XcalableMP as follows. 10

If the actual argument is an array name or an array section that satisfies the above conditions, 11

it represents an element sequence consisting of the elements of its local section in Fortran’s array 12

element order on each node. In addition, if the actual argument is an element of a global data 13

object, it represents an element sequence consisting of the corresponding element in the local 14

section and each element that follows it in array element order on each node. 15

An global actual argument that represents an element sequence and corresponds to a global 16

dummy argument is sequence associated with the dummy argument if the dummy argument is an 17

explicit-shape or assumed-size array. According to this (extended) rule of sequence association, 18

each element of the element sequence represented by the global actual argument is associated 19

with the element of the local section of the global dummy argument that has the same position 20

in array element order. 21

Sequence association is the default rule of association for global actual arguments, and it 22

is therefore applied unless it is obvious from the interface of the invoked procedure that the 23

corresponding dummy argument is neither an explicit-shape nor assumed-size array. 24

Implementation In order to implement sequence association, the name, a section, or an 25

element of global data appearing as an actual argument is treated by the XcalableMP compiler 26

as the base address of its local section on each node, and the global data appearing as the 27

corresponding dummy argument is initialized at runtime so that it is composed of the local 28

sections, each of which starts from the address received as the argument. On a node that does 29

not have the local section corresponding to the actual argument, an unspecified value (e.g. null) 30

is received. 31

Such an implementation implies that in many cases, in order to associate properly a global 32

actual argument with the global dummy argument, their mappings (including their shadow 33

attributes) must be identical. 34

Examples 35

Example 1 Both the actual argument a and the dummy argument x are global explicit-shape 36

arrays, and therefore, a is sequence associated with x. 37

The base address of the local section of a is passed between these subroutines on each 38

node. Each of the local sections of x starts from the received address (Figure 6.1). 39

XcalableMP Fortran
subroutine xmp_sub1

!$xmp nodes p(4)

!$xmp template t(100)

!$xmp distribute t(block) onto p

6.2. ARGUMENT PASSING MECHANISM IN XCALABLEMP FORTRAN 83

5 real a(100)

!$xmp align a(i) with t(i)

!$xmp shadow a(1:1)

call xmp_sub2(a)

end subroutine

10

subroutine xmp_sub2(x)

!$xmp nodes p(4)

!$xmp template t(100)

!$xmp distribute t(block) onto p

15 real x(100)

!$xmp align x(i) with t(i)

!$xmp shadow x(1:1)

...

a

x

1 100

1 100

xmp_sub1

xmp_sub2

p(1) p(2) p(3) p(4)

p(1) p(2) p(3) p(4)

sequence association

Figure 6.1: Sequence association with a global dummy argument.

Example 2 The actual argument a is a global explicit-shape array, and the dummy argument1

x is a local explicit-shape. Sequence association is also applied in this case.2

The caller subroutine xmp sub1 passes the base address of the local section of a on each3

node, and the callee f sub2 receives it and initializes x with the storage starting from it4

(Figure 6.2).5

XcalableMP Fortran
subroutine xmp_sub1

!$xmp nodes p(4)

!$xmp template t(100)

!$xmp distribute t(block) onto p

5 real a(100)

!$xmp align a(i) with t(i)

!$xmp shadow a(1:1)

n = 1 + 100/4 + 1

call f_sub2(a,n)

10 end subroutine

Fortran
subroutine f_sub2(x,n)

real x(n)

...

84 CHAPTER 6. PROCEDURE INTERFACES

a

x

1 100

1

xmp_sub1

f_sub2

p(1) p(2) p(3) p(4)

p(1) p(2) p(3) p(4)

25 26 50 51 75 76

27 1 27 1 27 1 27

sequence association

Figure 6.2: Sequence association with a local dummy argument.

Example 3 The actual argument a(:,1) is a contiguous section of a global data object, and 1

the dummy argument x is a local explicit-shape array. Sequence association is applied in 2

this case, but only the node p(1) owns the section. Hence, f sub2 is invoked only by p(1) 3

(Figure 6.3). 4

XcalableMP Fortran
subroutine xmp_sub1

!$xmp nodes p(4)

!$xmp template t(100,100)

!$xmp distribute t(*,block) onto p

5 real a(100,100)

!$xmp align a(i,j) with t(i,j)

!$xmp shadow a(0,1:1)

n = 100

!$xmp task on p(1)

10 call f_sub2(a(:,1),n)

!$xmp end task

end subroutine

Fortran
subroutine f_sub2(x,n)

real x(n)

...

6.2. ARGUMENT PASSING MECHANISM IN XCALABLEMP FORTRAN 85

a

x

1 100

xmp_sub1

f_sub2

p(1)

p(1) p(2) p(3) p(4)
25 26 50 51 75 76

sequence
association

Figure 6.3: Sequence association of a section of a global data object as an actual argument with
a local dummy argument.

Example 4 The actual argument a(1) is an element of the global data, and the dummy ar-1

gument x is a local explicit-shape array. Sequence association is applied in this case, but2

only the node p(1) owns the element. Hence, f sub2 is invoked only by p(1)(Figure 6.4).3

XcalableMP Fortran
subroutine xmp_sub1

!$xmp nodes p(4)

!$xmp template t(100)

!$xmp distribute t(block) onto p

5 real a(100)

!$xmp align a(i) with t(i)

!$xmp shadow a(1:1)

n = 100/4

!$xmp task on p(1)

10 call f_sub2(a(1),n)

!$xmp end task

end subroutine

Fortran
subroutine f_sub2(x,n)

real x(n)

...

Example 5 Even if either the global actual or dummy argument has a full shadow, the rule of4

sequence association is the same in principle. Hence, the base address of the local section5

of a is passed between these subroutines on each node, and each local section of x starts6

from the received address (Figure 6.5).7

6.2.2 Descriptor Association of Global Data8

When the actual argument is a global data object, and it is obvious from the interface of9

the invoked procedure that the corresponding dummy argument is neither an explicit-shape10

nor assumed-size array, the actual argument is descriptor associated with the dummy argument.11

According to the descriptor association rule, the dummy argument inherits its shape and storage12

from the actual argument.13

86 CHAPTER 6. PROCEDURE INTERFACES

a

x

1 100

xmp_sub1

f_sub2

p(1)

p(1) p(2) p(3) p(4)

25 26 50 51 75 76

sequence
association

1 25

Figure 6.4: Sequence association of an element of a global data object as an actual argument
with a local dummy argument.

a

1 100

xmp_sub1

xmp_sub2

p(1)

p(2)

p(3)

p(4)

sequence association

x

1 100

p(1)

p(2)

p(3)

p(4)

Figure 6.5: Sequence association with a global dummy argument that has a full shadow.

Implementation In order to implement the descriptor association, a global actual argument 1

is treated by the XcalableMP compiler: 2

• as if it were the global-data descriptor of the actual array, which is an internal data structure 3

managed by the XcalableMP runtime system to store information on a global data object 4

(see 7.1.1) if the dummy is a global data object; or 5

• as it is an array representing the local section of the actual array, which is to be processed 6

by the backend Fortran compiler in the same manner as usual data if the dummy is a local 7

data object. 8

For the first case, a global dummy is initialized at runtime with a copy of the global-data 9

descriptor received. 10

When an actual argument is descriptor associated with the dummy argument and their 11

mappings are not identical, the XcalableMP runtime system may detect and report the error. 12

6.2. ARGUMENT PASSING MECHANISM IN XCALABLEMP FORTRAN 87

Examples1

Example 1 There is an explicit interface of the subroutine xmp sub2 specified by an interface2

block in the subroutine xmp sub1, from which it is found that the dummy argument x3

is a global assumed-shape array. Therefore, the global actual argument a is descriptor4

associated with the global dummy argument x.5

It is the global-data descriptor of a that is passed between these subroutines. The dummy6

argument x is initialized by the XcalableMP runtime system on the basis of the information7

extracted from the descriptor received (Figure 6.6).8

XcalableMP Fortran
subroutine xmp_sub1

!$xmp nodes p(4)

!$xmp template t(100)

5 !$xmp distribute t(block) onto p

real a(100)

!$xmp align a(i) with t(i)

!$xmp shadow a(1:1)

10 interface

subroutine xmp_sub2(x)

!$xmp nodes p(4)

!$xmp template t(100)

!$xmp distribute t(block) onto p

15 real x(:)

!$xmp align x(i) with t(i)

!$xmp shadow a(1:1)

end subroutine xmp_sub2

end interface

20

call xmp_sub2(a)

end subroutine

25 subroutine xmp_sub2(x)

!$xmp nodes p(4)

!$xmp template t(100)

!$xmp distribute t(block) onto p

real x(:)

30 !$xmp align x(i) with t(i)

!$xmp shadow a(1:1)

...

Example 2 There is the explicit interface of the subroutine f sub2, which is written in Fortran,9

specified by an interface block in the subroutine xmp sub1, and the dummy argument x is10

a local (i.e., non-mapped) assumed-shape array. Therefore, the global actual argument a11

is descriptor associated with the local dummy argument x.12

The global actual argument is replaced with its local section by the XcalableMP compiler,13

and the association of the local section with the dummy argument is to be processed by14

the backend Fortran compiler in the same manner as usual data (Figure 6.7).15

88 CHAPTER 6. PROCEDURE INTERFACES

a

x

1 100

1 100

global-data descriptor

global-data descriptor

xmp_sub1

xmp_sub2

descriptor association

p(1) p(2) p(3) p(4)

p(1) p(2) p(3) p(4)

Figure 6.6: Descriptor association with a global dummy argument.

XcalableMP Fortran
subroutine xmp_sub1

!$xmp nodes p(4)

!$xmp template t(100)

5 !$xmp distribute t(block) onto p

real a(100)

!$xmp align a(i) with t(i)

!$xmp shadow a(1:1)

10 interface

subroutine f_sub2(x)

real x(:)

end subroutine f_sub2

end interface

15

call f_sub2(a)

end subroutine

Fortran
subroutine f_sub2(x)

real x(:)

...

6.3 Argument-Passing Mechanism in XcalableMP C 1

When an actual argument is a global data object, it is passed by the address of its local section. 2

When a dummy argument is a global data object , an address is received and used as the base 3

address of each of its local sections. 4

Implementation The name of a global data object appearing as an actual argument is treated 5

by the XcalableMP compiler as the pointer to the first element of its local section on each 6

6.3. ARGUMENT-PASSING MECHANISM IN XCALABLEMP C 89

a

x

1 100

1

xmp_sub1

f_sub2

p(1) p(2) p(3) p(4)

p(1) p(2) p(3) p(4)

25 26 50 51 75 76

27 1 27 1 27 1 27

descriptor association by the backend compiler

Figure 6.7: Descriptor association with a local dummy argument.

node. On a node onto which no part of the global data object is mapped, the pointer is set1

to an unspecified value (e.g., null). Note that an element of a global data object in the actual2

argument list is treated in the same manner as those in other usual statements because an array3

element is passed by value, as in C.4

The name of a global data object appearing as a dummy argument is treated by the Xcal-5

ableMP compiler as the pointer to the first element of its local section on each node. As a result,6

it is initialized at runtime so that it is composed of the local sections on the executing nodes.7

Such an implementation implies that in many cases, in order to pass properly a global actual8

argument to the corresponding global dummy argument, their mappings (including their shadow9

attributes) must be identical.10

Examples11

Example 1 The global actual argument a is treated by the XcalableMP compiler as the pointer12

to the first element of its local section, which is passed to the callee, on each node.13

The global dummy argument x is initialized so that each of its local sections starts from14

the address held by the received pointer (Figure 6.8).15

XcalableMP C
void xmp_func1()

{

#pragma xmp nodes p[4]

#pragma xmp template t[100]

5 #pragma xmp distribute t[block] onto p

float a[100];

#pragma xmp align a[i] with t[i]

#pragma xmp shadow a[1:1]

10 xmp_func2(a);

}

void xmp_func2(float x[100])

{

15 #pragma xmp nodes p[4]

#pragma xmp template t[100]

#pragma xmp distribute t[block] onto p

90 CHAPTER 6. PROCEDURE INTERFACES

#pragma xmp align x[i] with t[i]

#pragma xmp shadow a[1:1]

20 ...

a

x

0 99

0 99

xmp_func1

xmp_func2

p[0] p[1] p[2] p[3]

p[0] p[1] p[2] p[3]

pass by address

Figure 6.8: Passing to a global dummy argument.

Example 2 The global actual argument a is treated by the XcalableMP compiler as the pointer 1

to the first element of its local section, which is passed to the callee, on each node. 2

The local dummy argument x on each node starts from the address held by the received 3

pointer (Figure 6.9). 4

XcalableMP C
void xmp_func1()

{

#pragma xmp nodes p[4]

#pragma xmp template t[100]

5 #pragma xmp distribute t[block] onto p

float a[100];

#pragma xmp align a[i] with t[i]

#pragma xmp shadow a[1:1]

10 c_func2(a);

}

C
void c_func2(float x[27])

{

...

Example 3 The actual argument a[0] is an element of a global data object, and the dummy 5

argument x is a scalar, where the normal argument-passing rule of C for variables of a basic 6

type (i.e., “pass-by-value”) is applied. However, only the node p[0] owns the element. 7

Hence, c func2 is invoked only by p[0] (Figure 6.10). 8

XcalableMP C
void xmp_func1()

{

#pragma xmp nodes p[4]

#pragma xmp template t[100]

5 #pragma xmp distribute t[block] onto p

6.3. ARGUMENT-PASSING MECHANISM IN XCALABLEMP C 91

a

x

0 99

0

xmp_func1

c_func2

p[0] p[1] p[2] p[3]

p[0] p[1] p[2] p[3]

24 25 49 50 74 75

26 0 26 0 26 0 26

pass by address

Figure 6.9: Passing to a local dummy argument.

float a[100];

#pragma xmp align a[i] with t[i]

#pragma xmp shadow a[1:1]

10 #pragma xmp task on p[0]

c_func2(a[0]);

}

C
void c_func2(float x)

{

...

a

x

0 99

xmp_func1

c_func2

p[0]

p[0] p[1] p[2] p[3]

24 25 49 50 74 75

pass by
value

Figure 6.10: Passing an element of a global data object as an actual argument to a local dummy
argument.

Chapter 71

Intrinsic and Library Procedures2

This specification defines various procedures that perform a system inquiry, synchronization,3

computation, etc. The procedures are provided as intrinsic procedures in XcalableMP Fortran,4

and as library procedures in XcalableMP C.5

7.1 Intrinsic Functions6

7.1.1 xmp desc of7

Format8

[F] type(xmp desc) xmp desc of(xmp entity)9

Note that xmp desc of is an intrinsic function in XcalableMP Fortran or a built-in operator10

in XcalableMP C. For the xmp desc of operator, refer to section 3.6.11

Synopsis12

xmp desc of returns a descriptor to retrieve information of the specified global array, template,13

or node array. The resulting descriptor can be used as an input argument of mapping inquiry14

functions.15

The type of descriptors, type(xmp desc), in XcalableMP Fortran, and xmp desc t, in Xcal-16

ableMP C, is implementation-defined, and it is defined in a Fortran module named xmp lib or17

a Fortran include file named xmp lib.h.18

Arguments19

The argument or operand xmp entity is the name of either a global array, a template, or a node20

array.21

7.2 System Inquiry Functions22

• xmp all node num23

• [C] xmpc all node num24

• xmp all num nodes25

• xmp node num26

• [C] xmpc node num27

93

94 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

• [C] xmpc this image 1

• xmp num nodes 2

• xmp num images 3

• xmp wtime 4

• xmp wtick 5

7.2.1 xmp all node num 6

Format 7

[F] integer function xmp all node num()

[C] int xmp all node num(void)
8

Synopsis 9

The xmp all node num routine returns the node number, within the entire node set, of the node 10

that calls xmp all node num. 11

Arguments 12

none. 13

7.2.2 [C] xmpc all node num 14

Format 15

[C] int xmpc all node num(void) 16

Synopsis 17

The xmpc all node num routine returns the node number −1, within the entire node set, of the 18

node that calls xmpc all node num. 19

Arguments 20

none. 21

7.2.3 xmp all num nodes 22

Format 23

[F] integer function xmp all num nodes()

[C] int xmp all num nodes(void)
24

Synopsis 25

The xmp all num nodes routine returns the number of nodes in the entire node set. 26

Arguments 27

none. 28

7.2. SYSTEM INQUIRY FUNCTIONS 95

7.2.4 xmp node num1

Format2

[F] integer function xmp node num()

[C] int xmp node num(void)
3

Synopsis4

The xmp node num routine returns the node number, within the current executing node set, of5

the node that calls xmp node num.6

Arguments7

none.8

7.2.5 [C] xmpc node num9

Format10

[C] int xmpc node num(void)11

Synopsis12

The xmpc node num routine returns the node number −1, within the current executing node set,13

of the node that calls xmpc node num.14

Arguments15

none.16

7.2.6 [C] xmpc this image17

Format18

[C] int xmpc this image(void)19

Synopsis20

The xmpc this image routine is identical to the xmpc node num routine.21

Arguments22

none.23

7.2.7 xmp num nodes24

Format25

[F] integer function xmp num nodes()

[C] int xmp num nodes(void)
26

Synopsis27

The xmp num nodes routine returns the number of the executing nodes.28

96 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

Arguments 1

none. 2

7.2.8 xmp num images 3

Format 4

[F] integer function xmp num images()

[C] int xmp num images(void)
5

Synopsis 6

The xmp num images routine is identical to the xmp num nodes routine. 7

Arguments 8

none. 9

7.2.9 xmp wtime 10

Format 11

[F] double precision function xmp wtime()

[C] double xmp wtime(void)
12

Synopsis 13

The xmp wtime routine returns elapsed wall-clock time in seconds since some time in the past. 14

The “time in the past” is guaranteed not to change during the life of the process. There is no 15

requirement that different nodes return “the same time.” 16

Arguments 17

none. 18

7.2.10 xmp wtick 19

Format 20

[F] double precision function xmp wtick()

[C] double xmp wtick(void)
21

Synopsis 22

The xmp wtick routine returns the resolution of the timer used by xmp wtime. It returns a 23

double-precision value that is equal to the number of seconds between successive clock ticks. 24

Arguments 25

none. 26

7.3. [C] EXECUTION CONTROL FUNCTIONS 97

7.3 [C] Execution Control Functions1

7.3.1 xmp exit2

Format3

[C] void xmp exit(int status)4

Synopsis5

xmp exit terminates an XcalableMP program normally. The value of the argument status6

returned to the host environment is the same as that by the exit standard library function of7

the base language.8

xmp exit must be collectively invoked by every node in the entire node set; otherwise, the9

behavior is undefined.10

Arguments11

The argument status is a status code to be returned to the host environment.12

7.4 Synchronization Functions13

7.4.1 xmp test async14

[F] logical function xmp test async(async id)

integer async id

[C] int xmp test async(int async id)

15

Synopsis16

The xmp test async routine returns .true. in XcalableMP Fortran, or 1 in XcalableMP C, if17

an asynchronous communication specified by the argument async id is complete; otherwise, it18

returns .false. or 0.19

Arguments20

The argument async id is an integer expression that specifies an asynchronous communication21

initiated by a global communication construct with the async clause.22

7.5 Memory Allocation Functions23

7.5.1 [C] xmp malloc24

void* xmp malloc(xmp desc t d, size t size0, size t size1, ...)25

Synopsis26

The xmp malloc routine allocates storage for the local section of a global array of size size0×size1× . . .27

that is associated with the descriptor specified by d, and returns the pointer to it on each node.28

For an example of xmp malloc, refer to section 3.5.29

98 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

Arguments 1

• d is the descriptor associated with the pointer to a global array to be allocated. 2

• size0, size1, ... are the sizes of the dimensions of the global array to be allocated. 3

7.6 Mapping Inquiry Functions 4

All mapping inquiry functions are specified as integer functions. These functions return zero 5

upon success and an implementation-defined negative integer value upon failure. 6

7.6.1 xmp nodes ndims 7

Format 8

[F] integer function xmp nodes ndims(d, ndims)

type(xmp desc) d

integer ndims

[C] int xmp nodes ndims(xmp desc t d, int *ndims)

9

Synopsis 10

The xmp nodes ndims function provides the rank of the target node array. 11

Input Arguments 12

• d is a descriptor of a node array. 13

Output Arguments 14

• ndims is the rank of the node array specified by d. 15

7.6.2 xmp nodes index 16

Format 17

[F] integer function xmp nodes index(d, dim, index)

type(xmp desc) d

integer dim

integer index

[C] int xmp nodes index(xmp desc t d, int dim, int *index)

18

Synopsis 19

The xmp nodes index function provides the indices of the executing node in the target node 20

array. 21

Input Arguments 22

• d is a descriptor of a node array. 23

• dim is the target dimension of the node array. 24

Output Arguments 25

• index is an index of the target dimension of the node array specified by d. 26

7.6. MAPPING INQUIRY FUNCTIONS 99

7.6.3 xmp nodes size1

Format2

[F] integer function xmp nodes size(d, dim, size)

type(xmp desc) d

integer dim

integer size

[C] int xmp nodes size(xmp desc t d, int dim, int *size)

3

Synopsis4

The xmp nodes size function provides the size of each dimension of the target node array.5

Input Arguments6

• d is a descriptor of a node array.7

• dim is the target dimension of the node array.8

Output Arguments9

• size is the extent of the target dimension of the node array specified by10

t d.11

7.6.4 xmp nodes attr12

Format13

[F] integer function xmp nodes attr(d, attr)

type(xmp desc) d

integer attr

[C] int xmp nodes attr(xmp desc t d, int *attr)

14

Synopsis15

The xmp nodes attr function provides the attribute of the target node array. The output value16

of the argument attr is one of:17

XMP ENTIRE NODES (Entire nodes)
XMP EXECUTING NODES (Executing nodes)
XMP EQUIVALENCE NODES (Equivalence nodes)

18

These are named constants that are defined in module xmp lib and in the include file19

xmp lib.h in XcalableMP Fortran, and symbolic constants that are defined in the header file20

xmp.h in XcalableMP C.21

Input Arguments22

• d is a descriptor of a node array.23

Output Arguments24

• attr is an attribute of the target node array specified by d.25

100 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

7.6.5 xmp nodes equiv 1

Format 2

[F] integer function xmp nodes equiv(d, dn, lb, ub, st)

type(xmp desc) d

type(xmp desc) dn

integer lb(*)

integer ub(*)

integer st(*)

[C] int xmp nodes equiv(xmp desc t d, xmp desc t *dn,

int lb[], int ub[], int st[])

3

Synopsis 4

The xmp nodes equiv function provides the descriptor of a node array as well as a subscript list 5

that represents a node set that is assigned to the target node array in the nodes directive. This 6

function returns with a failure when the target node array is not declared as equivalenced. 7

Input Arguments 8

• d is a descriptor of a node array. 9

Output Arguments 10

• dn is the descriptor of the referenced node array if the target node array is declared as 11

equivalenced; otherwise, dn is set to undefined. 12

• lb is a one-dimensional integer array the extent of which must be more than or equal to 13

the rank of the referenced node array. The i-th element of lb is set to the lower bound of 14

the i-th subscript of the node reference unless it is “*”, or to undefined otherwise. 15

• ub is a one-dimensional integer array the extent of which must be more than or equal to 16

the rank of the referenced node array. The i-th element of ub is set to the upper bound of 17

the i-th subscript of the node reference unless it is “*”, or to undefined otherwise. 18

• st is a one-dimensional integer array the extent of which must be more than or equal to 19

the rank of the referenced node array. The i-th element of st is set to the stride of the 20

i-th subscript of the node reference unless it is “*”, or to zero otherwise. 21

7.6.6 xmp template fixed 22

Format 23

[F] integer function xmp template fixed(d, fixed)

type(xmp desc) d

logical fixed

[C] int xmp template fixed(xmp desc t d, int *fixed)

24

Synopsis 25

The xmp template fixed function provides the logical value that shows whether the template 26

is fixed or not. 27

7.6. MAPPING INQUIRY FUNCTIONS 101

Input Arguments1

• d is a descriptor of a template.2

Output Arguments3

• fixed is set to true in XcalableMP Fortran and an implementation-defined non-zero integer4

value in XcalableMP C if the template specified by d is fixed; otherwise, it is set to false5

in XcalableMP Fortran and zero in XcalableMP C.6

7.6.7 xmp template ndims7

Format8

[F] integer function xmp template ndims(d, ndims)

type(xmp desc) d

integer ndims

[C] int xmp template ndims(xmp desc t d, int *ndims)

9

Synopsis10

The xmp template ndims function provides the rank of the target template.11

Input Arguments12

• d is a descriptor of a template.13

Output Arguments14

• ndims is the rank of the template specified by d.15

7.6.8 xmp template lbound16

Format17

[F] integer function xmp template lbound(d, dim, lbound)

type(xmp desc) d

integer dim

integer lbound

[C] int xmp template lbound(xmp desc t d, int dim, int *lbound)

18

Synopsis19

The xmp template lbound function provides the lower bound of each dimension of the template.20

This function returns with a failure when the lower bound is not fixed.21

Input Arguments22

• d is a descriptor of a template.23

• dim is the target dimension of the template.24

Output Arguments25

• lbound is the lower bound of the target dimension of the template specified by d. When26

the lower bound is not fixed, it is set to undefined.27

102 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

7.6.9 xmp template ubound 1

Format 2

[F] integer function xmp template ubound(d, dim, ubound)

type(xmp desc) d

integer dim

integer ubound

[C] int xmp template ubound(xmp desc t d, int dim, int *ubound)

3

Synopsis 4

The xmp template ubound function provides the upper bound of each dimension of the template. 5

This function returns with a failure when the upper bound is not fixed. 6

Input Arguments 7

• d is a descriptor of a template. 8

• dim is the target dimension of the template. 9

Output Arguments 10

• ubound is an upper bound of the target dimension of the template specified by d. When 11

the upper bound is not fixed, it is set to undefined. 12

7.6.10 xmp dist format 13

Format 14

[F] integer function xmp dist format(d, dim, format)

type(xmp desc) d

integer dim

integer format

[C] int xmp dist format(xmp desc t d, int dim, int *format)

15

Synopsis 16

The xmp dist format function provides the distribution format of a dimension of a template. 17

The output value of the argument format is one of: 18

XMP NOT DISTRIBUTED (not distributed)
XMP BLOCK (block distribution)
XMP CYCLIC (cyclic distribution)
XMP GBLOCK (gblock distribution)

19

These symbolic constants are defined in “xmp.h”. 20

Input Arguments 21

• d is a descriptor of a template. 22

• dim is the target dimension of the template. 23

Output Arguments 24

• format is a distribution format of the target dimension of the template specified by d. 25

7.6. MAPPING INQUIRY FUNCTIONS 103

7.6.11 xmp dist blocksize1

Format2

[F] integer function xmp dist blocksize(d, dim, blocksize)

type(xmp desc) d

integer dim

integer blocksize

[C] int xmp dist blocksize(xmp desc t d, int dim, int *blocksize)

3

Synopsis4

The xmp dist blocksize function provides the block width of a dimension of a template.5

Input Arguments6

• d is a descriptor of a template.7

• dim is the target dimension of the template.8

Output Arguments9

• blocksize is the block width of the target dimension of the template specified by d.10

7.6.12 xmp dist gblockmap11

Format12

[F] integer function xmp dist gblockmap(d, dim, map)

type(xmp desc) d

integer dim

integer map(N)

[C] int xmp dist gblockmap(xmp desc t d, int dim, int map[])

13

Synopsis14

The xmp dist gblockmap function provides the mapping array of the gblock distribution.15

When the dim-th dimension of the global array is distributed by gblock and its mapping16

array is fixed, this function returns zero; otherwise, it returns an implementation-defined negative17

integer value.18

Input Arguments19

• d is a descriptor of a template.20

• dim is the target dimension of the template.21

Output Arguments22

• map is a one-dimensional integer array the extent of which is more than the size of the23

corresponding dimension of the node array onto which the template is distributed.24

The i-th element of map is set to the value of the i-th element of the target mapping array.25

104 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

7.6.13 xmp dist nodes 1

Format 2

[F] integer function xmp dist nodes(d, dn)

type(xmp desc) d

type(xmp desc) dn

[C] int xmp dist nodes(xmp desc t d, xmp desc t *dn)

3

Synopsis 4

The xmp dist nodes function provides the descriptor of the node array onto which a template 5

is distributed. 6

Input Arguments 7

• d is a descriptor of a template. 8

Output Arguments 9

• dn is the descriptor of the node array. 10

7.6.14 xmp dist axis 11

Format 12

[F] integer function xmp dist axis(d, dim, axis)

type(xmp desc) d

integer dim

integer axis

[C] int xmp dist axis(xmp desc t d, int dim, int *axis)

13

Synopsis 14

The xmp dist axis function provides the dimension of the node array onto which a dimension 15

of a template is distributed. This function returns with a failure when the dimension of the 16

template is not distributed. 17

Input Arguments 18

• d is a descriptor of a template. 19

• dim is the target dimension of the template. 20

Output Arguments 21

• axis is a dimension of the node array onto which the target dimension of the template 22

specified by d is distributed. When the dimension of the template is not distributed, it is 23

set to undefined. 24

7.6. MAPPING INQUIRY FUNCTIONS 105

7.6.15 xmp align axis1

Format2

[F] integer function xmp align axis(d, dim, axis)

type(xmp desc) d

integer dim

integer axis

[C] int xmp align axis(xmp desc t d, int dim, int *axis)

3

Synopsis4

The xmp align axis function provides the dimension of the template with which a dimension of5

a global array is aligned. This function returns with a failure when the dimension of the global6

array is not aligned.7

Input Arguments8

• d is a descriptor of a global array.9

• dim is the target dimension of the global array.10

Output Arguments11

• axis is the dimension of the template with which the target dimension of the global array12

specified by d is aligned. When the dimension of the global array is not aligned, or is13

collapsed, it is set to undefined.14

7.6.16 xmp align offset15

Format16

[F] integer function xmp align offset(d, dim, offset)

type(xmp desc) d

integer dim

integer offset

[C] int xmp align offset(xmp desc t d, int dim, int *offset)

17

Synopsis18

The xmp align offset function provides the align offset for a dimension of a global array. This19

function returns with a failure when there is no offset.20

Input Arguments21

• d is a descriptor of a global array.22

• dim is the target dimension of the global array.23

Output Arguments24

• offset is the align offset for the target dimension of the global array specified by d. When25

there is no offset, it is set to undefined.26

106 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

7.6.17 xmp align replicated 1

Format 2

[F] integer function xmp align replicated(d, dim, replicated)

type(xmp desc) d

integer dim

logical replicated

[C] int xmp align replicated(xmp desc t d, int dim, int *replicated)

3

Synopsis 4

The xmp align replicated function provides the logical value that shows whether or not the 5

dimension of the template with which a global array is aligned is replicated. 6

Input Arguments 7

• d is a descriptor of a global array. 8

• dim is the target dimension of the template with which the global array is aligned. 9

Output Arguments 10

• replicated is a logical scalar, which is set to true if the dimension of the template is 11

replicated. 12

7.6.18 xmp align template 13

Format 14

[F] integer function xmp align template(d, dt)

type(xmp desc) d

type(xmp desc) dt

[C] int xmp align template(xmp desc t d, xmp desc t *dn)

15

Synopsis 16

The xmp align template function provides the descriptor of the template with which a global 17

array is aligned. 18

Input Arguments 19

• d is a descriptor of a global array. 20

Output Arguments 21

• dt is the descriptor of the template. 22

7.6.19 xmp array ndims 23

Format 24

[F] integer function xmp array ndims(d, ndims)

type(xmp desc) d

integer ndims

[C] int xmp array ndims(xmp desc t d, int *ndims)

25

7.6. MAPPING INQUIRY FUNCTIONS 107

Synopsis1

The xmp array ndims function provides the rank of a global array.2

Input Arguments3

• d is a descriptor of a global array.4

Output Arguments5

• ndims is the rank of the global array specified by d.6

7.6.20 xmp array lshadow7

Format8

[F] integer function xmp array lshadow(d, dim, lshadow)

type(xmp desc) d

integer dim

integer lshadow

[C] int xmp array lshadow(xmp desc t d, int dim, int *lshadow)

9

Synopsis10

The xmp array lshadow function provides the size of the lower shadow of a dimension of a global11

array.12

Input Arguments13

• d is a descriptor of a global array.14

• dim is the target dimension of the global array.15

Output Arguments16

• lshadow is the size of the lower shadow of the target dimension of the global array specified17

by d.18

7.6.21 xmp array ushadow19

Format20

[F] integer function xmp array ushadow(d, dim, ushadow)

type(xmp desc) d

integer dim

integer ushadow

[C] int xmp array ushadow(xmp desc t d, int dim, int *ushadow)

21

Synopsis22

The xmp array ushadow function provides the size of the upper shadow of a dimension of a23

global array.24

108 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

Input Arguments 1

• d is a descriptor of a global array. 2

• dim is the target dimension of the global array. 3

Output Arguments 4

• ushadow is the size of the upper shadow of the target dimension of the global array specified 5

by d. 6

7.6.22 xmp array lbound 7

Format 8

[F] integer function xmp array lbound(d, dim, lbound)

type(xmp desc) d

integer dim

integer lbound

[C] int xmp array lbound(xmp desc t d, int dim, int *lbound)

9

Synopsis 10

The xmp array lbound function provides the lower bound of a dimension of a global array. This 11

function returns with a failure when the lower bound is not fixed. 12

Input Arguments 13

• d is a descriptor of a global array. 14

• dim is the target dimension of the global array. 15

Output Arguments 16

• lbound is the lower bound of the target dimension of the global array specified by d. When 17

the lower bound is not fixed, it is set to undefined. 18

7.6.23 xmp array ubound 19

Format 20

[F] integer function xmp array ubound(d, dim, ubound)

type(xmp desc) d

integer dim

integer ubound

[C] int xmp array ubound(xmp desc t d, int dim, int *ubound)

21

Synopsis 22

The xmp array ubound function provides the upper bound of a dimension of a global array. This 23

function returns with a failure when the upper bound is not fixed. 24

Input Arguments 25

• d is a descriptor of a global array. 26

• dim is the target dimension of the global array. 27

7.7. [F] ARRAY INTRINSIC FUNCTIONS OF THE BASE LANGUAGE 109

Output Arguments1

• ubound is the upper bound of the target dimension of the global array specified by d.2

When the upper bound is not fixed, it is set to undefined.3

7.7 [F] Array Intrinsic Functions of the Base Language4

The array intrinsic functions of the base language Fortran are classified into three classes: in-5

quiry, elemental, and transformational.6

This section specifies how these functions work in the XMP/F programs when a global array7

appears as an argument.8

• Inquiry functions9

The inquiry functions with a global array or its subobject being an argument are regarded10

as inquiries about the global array, and return its “global” properties as if it were not11

distributed.12

• Elemental functions13

The result of the elemental functions with a global array or its subobject being an argument14

has the same shape and mapping as the argument. Note that such a reference of these15

elemental functions is in effect limited to be in the array construct.16

• Transformational functions17

It is unspecified how the transformational functions work when a global array or its subob-18

ject appears as an argument. A processor shall detect such a reference of these functions19

and issue a warning message for it. Some intrinsic transformational subroutines are defined20

in section 7.9 as alternatives to these transformational functions.21

7.8 [C] Built-in Elemental Functions22

Some built-in elemental functions that can operate each element of array arguments are defined23

in XcalableMP C. Such a built-in function accepts one or more array sections as its arguments24

and returns an array-valued result having the same shape and mapping as the argument. The25

values of the elements of the result are the same as what would have been obtained if the scalar26

function of the C standard library had been applied separately to the corresponding elements27

of each array argument.28

These functions may appear on the right-hand side of an array assignment statement, and29

it should be preceded by the array directive if the array section is distributed.30

Table 7.1 shows the list of built-in elemental functions in XcalableMP C. Their elementwise31

behavior is the same as those of the corresponding functions in the C standard library.32

7.9 Intrinsic/Built-in Transformational Procedures33

Some intrinsic/built-in transformational procedures are defined for the non-elemental operations34

of arrays.35

Note that each “array argument” of the following procedures must be an array name or an36

array section, in XcalableMP Fortran, or an array section, in XcalableMP C, that represents37

the whole array.38

110 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

Table 7.1: Built-in elemental functions in XcalableMP C. (The first line refers to the element
type of their argument(s) and return value.)

double float long double

acos acosf acosl
asin asinf asinl
atan atanf atanl
atan2 atan2f atan2l
cos cosf cosl
sin sinf sinl
tan tanf tanl
cosh coshf coshl
sinh sinhf sinhl
tanh tanhf tanhl
exp expf expl
frexp frexpf frexpl
ldexp ldexpf ldexpl
log logf logl
log10 log10f log10l
fabs fabsf fabsl
pow powf powl
sqrt sqrtf sqrtl
ceil ceilf ceill
floor floorf floorl
fmod fmodf fmodl

7.9.1 xmp scatter 1

Format 2

[F] xmp scatter(x, a, idx1, ..., idxn)

[C] void xmp scatter(x[:]..., a[:]..., idx1[:]..., ..., idxn[:]...)
3

Synopsis 4

The xmp scatter procedure copies the value of each element of an array a to the corresponding 5

element of an array x that is determined by vectors idx1, ..., idxn. 6

This procedure produces the same result as the following Fortran assignment statement when 7

x, a, and idx1, ..., idxn are not mapped. 8

x(idx1(:,:,...), ..., idxn(:,:,...)) = a(:,:,...) 9

If any of the vectors idx1, ..., idxn have two or more elements with the same value, the 10

behavior and the result of xmp scatter is unspecified. 11

Output Arguments 12

• x is an array of any type, shape, and mapping. 13

7.9. INTRINSIC/BUILT-IN TRANSFORMATIONAL PROCEDURES 111

Input Arguments1

• a is an array of the same type as x and any shape and mapping.2

• idx1, ..., idxn are integer arrays of the same shape and mapping as a. The number of3

idx’s is equal to the rank of x.4

7.9.2 xmp gather5

Format6

[F] xmp gather(x, a, idx1, ..., idxn)

[C] void xmp gather(x[:]..., a[:]..., idx1[:]..., ..., idxn[:]...)
7

Synopsis8

The xmp gather procedure copies the value of each element of an array a determined by vectors9

idx1, ..., idxn to the corresponding element of an array x.10

This procedure produces the same result as the following Fortran assignment statement when11

x, a, and idx1, ..., idxn are not mapped.12

x(:,:,...) = a(idx1(:,:,...), ..., idxn(:,:,...))13

Output Arguments14

• x is an array of any type, shape, and mapping.15

Input Arguments16

• a is an array of the same type as x and any shape and mapping.17

• idx1, ..., idxn are integer arrays of the same shape and mapping as x. The number of18

idx’s is equal to the rank of a.19

7.9.3 xmp pack20

Format21

[F] xmp pack(v, a, [mask])

[C] void xmp pack(v[:], a[:]..., [mask[:]...])
22

Synopsis23

The xmp pack procedure packs all of the elements of an array a, if mask is not specified, or24

the elements selected by mask, to a vector v according to the array element order of the base25

language.26

Output Arguments27

• v is a one-dimensional array of any type, size, and mapping.28

Input Arguments29

• a is an array of the same type as v and any shape and mapping.30

• (optional) mask is an array of default logical, in XcalableMP Fortran, or of type Bool, in31

XcalableMP C, that has the same shape and mapping as a.32

112 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

7.9.4 xmp unpack 1

Format 2

[F] xmp unpack(a, v, [mask])

[C] void xmp unpack(a[:]..., v[:], [mask[:]...])
3

Synopsis 4

The xmp unpack procedure unpacks a vector v to all the elements of an array a, if mask is not 5

specified, or the elements selected by a mask mask according to the array element order of the 6

base language. 7

Output Arguments 8

• a is an array of any type, shape, and mapping. 9

Input Arguments 10

• v is a one-dimensional array of the same type of a and any shape and mapping. 11

• (optional) mask is an array of default logical, in XcalableMP Fortran, or of type Bool, in 12

XcalableMP C, that has the same shape and mapping as a. 13

7.9.5 xmp transpose 14

Format 15

[F] xmp transpose(x, a, opt)

[C] void xmp transpose(x[:][:], a[:][:], int opt)
16

Synopsis 17

The xmp transpose procedure sets the result obtained by transposing a matrix a to a matrix x. 18

Output Arguments 19

• x is a two-dimensional array of any type, shape, and mapping. 20

Input Arguments 21

• a is a two-dimensional array of the same type as x and any mapping. The extent of the 22

first dimension is equal to that of the second dimension of x, and the extent of the second 23

dimension is equal to that of the first dimension of x. 24

• opt is an integer scalar. If opt is 0, the value of a remains unchanged after calling this 25

procedure. If opt is 1, the value may be changed. 26

7.9.6 xmp matmul 27

Format 28

[F] xmp matmul(x, a, b)

[C] void xmp matmul(x[:][:], a[:][:], b[:][:])
29

7.9. INTRINSIC/BUILT-IN TRANSFORMATIONAL PROCEDURES 113

Synopsis1

The xmp matmul procedure computes the product of matrices a and b, and it sets the result to2

a matrix x.3

Output Arguments4

• x is a two-dimensional array of any numerical type, shape and mapping.5

Input Arguments6

• a is a two-dimensional array of the same type of x and any mapping. The extent of the7

first dimension is equal to that of x.8

• b is a two-dimensional array of the same type of x and any mapping. The extent of the9

first dimension is equal to that of the second dimension of a, and the extent of the second10

dimension is equal to that of x.11

7.9.7 xmp sort up12

Format13

[F] xmp sort up(v1, v2)

[C] void xmp sort up(v1[:], v2[:])
14

Synopsis15

The xmp sort up procedure sets the result obtained by sorting elements of a vector v2 in as-16

cending order to a vector v1.17

Output Arguments18

• v1 is a one-dimensional array of any numerical type, shape, and mapping.19

Input Arguments20

• v2 is a one-dimensional array of the same type, shape, and mapping as v1.21

7.9.8 xmp sort down22

Format23

[F] xmp sort down(v1, v2)

[C] void xmp sort down(v1[:], v2[:])
24

Synopsis25

The xmp sort down procedure sets the result obtained by sorting elements of a vector v2 in26

descending order to a vector v1.27

Output Arguments28

• v1 is a one-dimensional array of any numerical type, shape and mapping.29

114 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

Input Arguments 1

• v2 is a one-dimensional array of the same type, shape, and mapping as v1. 2

Chapter 81

OpenMP in XcalableMP Programs2

The usage of OpenMP directives in XcalableMP programs is subjected to the following basic3

rule.4

• XcalableMP directives and the invocation of an XcalableMP intrinsic/built-in procedure5

should be single-threaded, and they may therefore be placed in the sequential part, or6

one of the single, master, or critical regions that are closely nested inside a parallel7

region whose parent thread is the initial thread;8

• with the exception that the XcalableMP’s loop directive that controls a loop can be placed9

immediately inside the OpenMP’s parallel loop directive (parallel do for Fortran and10

parallel for for C), which controls the identical loop.11

The behavior of coarray references in a parallel region is implemetation-defined.12

Examples13

Assume that the following codes are placed in the sequential part of the program.14

XcalableMP C
#pragma omp parallel for

for (...){

#pragma xmp barrier // NG because not single-threaded

}

XcalableMP C
#pragma omp parallel for

for (...){

#pragma omp single

{

5 #pragma xmp barrier // OK because single-threaded

// (inside a single region)

}

}

XcalableMP C
#pragma omp parallel for

#pragma xmp loop // OK because immediately nested

for (...){

...

5 }

115

116 CHAPTER 8. OPENMP IN XCALABLEMP PROGRAMS

XcalableMP C
#pragma xmp loop // OK because single-threaded (not nested)

#pragma omp parallel for

for (...){

...

5 }

XcalableMP C
#pragma xmp loop // OK because single threaded (not nested)

for (...){

#pragma omp parallel for

for (...) { ... }

5 }

XcalableMP C
#pragma omp parallel for

for (...){

#pragma xmp loop // NG because not immediately nested

for (...) { ... }

5 }

Bibliography1

[1] OpenMP Architecture Review Board, “OpenMP Application Program Interface Version2

3.1”, http://www.openmp.org/mp-documents/OpenMP3.1.pdf (2011).3

[2] High Performance Fortran Forum, “High Performance Fortran Language Specification Ver-4

sion 2.0”, http://hpff.rice.edu/versions/hpf2/hpf-v20.pdf (1997).5

[3] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard Version6

2.2”, http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf (2009).7

[4] Japan Association of High Performance Fortran, “HPF/JA Language Specification”, http:8

//www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf (1999).9

[5] Yuanyuan Zhang, Hidetoshi Iwashita, Kuninori Ishii, Masanori Kaneko, Tomotake Naka-10

mura, and Kohichiro Hotta, “Hybrid Parallel Programming on SMP Clusters Using XP-11

Fortran and OpenMP”, Proceedings of the International Workshop on OpenMP (IWOMP12

2010), Vol. 6132 of Lecture Notes in Computer Science, pp. 133–148, Springer (2010).13

[6] Hidetoshi Iwashita, Naoki Sueyasu, Sachio Kamiya, and Matthijs van Waveren, “VPP14

Fortran and the design of HPF/JA extensions”, Concurrency and Computation — Practice15

& Experience, Vol. 14, No. 8–9, pp. 575–588, Wiley (2002).16

[7] Jinpil Lee, Mitsuhisa Sato, and Taisuke Boku, “OpenMPD: A Directive-Based Data Parallel17

Language Extension for Distributed Memory Systems”, Proceedings of the 2008 Interna-18

tional Conference on Parallel Processing, pp. 121-128 (2008).19

117

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://hpff.rice.edu/versions/hpf2/hpf-v20.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf

Appendix A1

Programming Interface for MPI2

This chapter describes the programming interface for MPI, which is widely used for parallel3

programming in cluster computing. Users can introduce MPI functions to XcalableMP using4

the interface.5

A.1 Call MPI functions from an XcalableMP program6

XcalableMP provides the following user API functions to call MPI functions from an XcalableMP7

program.8

• xmp get mpi comm9

• xmp init mpi10

• xmp finalize mpi11

A.1.1 xmp get mpi comm12

Format13

[F] integer function xmp get mpi comm()

[C] MPI Comm xmp get mpi comm(void)
14

Synopsis15

xmp get mpi comm returns the handle of the communicator associated with the executing node16

set.17

Arguments18

none.19

A.1.2 xmp init mpi20

Format21

[F] xmp init mpi()

[C] void xmp init mpi(int *argc, char ***argv)
22

Synopsis23

xmp init mpi initializes the MPI execution environment.24

119

120 APPENDIX A. PROGRAMMING INTERFACE FOR MPI

Arguments 1

In XcalableMP C, the command-line arguments argc and argv should be given to xmp init mpi. 2

A.1.3 xmp finalize mpi 3

Format 4

[F] xmp finalize mpi()

[C] void xmp finalize mpi(void)
5

Synopsis 6

xmp finalize mpi terminates the MPI execution environment. 7

Arguments 8

none. 9

Example 10

XcalableMP C
#include <stdio.h>

#include "mpi.h"

#include "xmp.h"

5 #pragma xmp nodes p[4]

int main(int argc, char *argv[]) {

xmp_init_mpi(&argc, &argv)

10 int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

#pragma xmp task on p[1:2]

15 {

MPI_Comm comm = xmp_get_mpi_comm(); // get the MPI communicator of p[1:2]

int rank, size;

MPI_Comm_rank(comm, &rank);

20 MPI_Comm_size(comm, &size);

}

xmp_finalize_mpi();

25 return 0;

}

A.2. CALL XCALABLEMP FUNCTIONS FROM AN MPI PROGRAM 121

A.2 Call XcalableMP functions from an MPI program1

XcalableMP provides the following user API functions to call XcalableMP functions from an2

MPI program.3

• xmp init4

• xmp finalize5

The XcalableMP functions should appear between xmp init and xmp finalize. Please refer6

to chapter 6 and examples in this section about how arguments are passed to the XcalableMP7

functions.8

A.2.1 xmp init9

Format10

[F] xmp init(comm)

integer comm

[C] void xmp init(MPI Comm comm)

11

Synopsis12

xmp init initializes the XcalableMP execution environment. The MPI communicatior indicated13

in xmp init is used as an executing node set in the XcalableMP functions. xmp init should14

appear after MPI Init.15

Arguments16

MPI Communicator comm should be given to xmp init.17

A.2.2 xmp finalize18

Format19

[F] xmp finalize()

[C] void xmp finalize(void)
20

Synopsis21

xmp finalize finalizes the XcalableMP execution environment. xmp finalize should appear22

before MPI Finalize.23

Arguments24

none.25

Example (C language)26

MPI C
#include <mpi.h>

#include <xmp.h>

#define N 5

int main(int argc, char **argv) 5

{

122 APPENDIX A. PROGRAMMING INTERFACE FOR MPI

int a[N], comm_size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &comm_size); 10

xmp_init(MPI_COMM_WORLD);

foo(N*comm_size, a); // foo() is an XMP function

xmp_finalize();

15

MPI_Finalize();

return 0;

}

XcalableMP C
void foo(int total_elements, int a[total_elements])

{

#pragma xmp nodes p[*]

#pragma xmp template t[total_elements]

5 #pragma xmp distribute t[block] onto p

#pragma xmp align a[i] with t[i]

#pragma xmp loop on t[i]

for(int i=0;i<total_elements;i++)

10 a[i] = i;

}

Example (Fortran) 1

MPI Fortran
program test

include ’mpif.h’

integer, parameter :: N = 5

integer :: a(N), ierr, comm_size

5

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, comm_size, ierr)

call xmp_init(MPI_COMM_WORLD)

call foo(comm_size*5, a) 10

call xmp_finalize()

call MPI_FINALIZE(ierr)

end program test

XcalableMP Fortran
subroutine foo(total_elements, a)

integer total_elements, a(total_elements)

!$xmp nodes p(*)

!$xmp template t(total_elements)

5 !$xmp distribute t(block) onto p

!$xmp align a(i) with t(i)

A.2. CALL XCALABLEMP FUNCTIONS FROM AN MPI PROGRAM 123

!$xmp loop on t(i)

do i=1, total_elements

10 a(i) = i

end do

end subroutine foo

Appendix B1

Interface to Numerical Libraries2

This chapter describes the XcalableMP interfaces to existing MPI parallel libraries, which is3

effective to achieve high productivity and performance of XcalableMP programs.4

B.1 Interface Design5

The recommended design of the interface is as follows:6

• Numerical library routines can be invoked by an XcalableMP procedure through an inter-7

face procedure (Figure B.1).8

Program foo

!$xmp…

!$xmp…

…

call ixmp_xxx(…)

…

stop

end

subroutine ixmp_xxx(…)

…

call sub(…)

…

return

end

subroutine sub(…)

…

return

end

XcalableMP program XcalableMP interface Numerical library routine

Figure B.1: Invocation of a library routine using an interface procedure.

• When the numerical library routine requires information regarding a global array, the9

interface extracts it from the descriptor using query routines provided by XcalableMP,10

and passes it to the numerical library routine as an argument.11

• The interface does not affect the behavior of numerical library routines except for restric-12

tions concerning the XcalableMP specification.13

B.2 Extended Mapping Inquiry Functions14

In this section, the extended mapping inquiry functions, which are implementation-defined, are15

shown. Specifications of the functions below are obtained from the Omni XcalableMP compiler16

(http://www.xcalablemp.org/download.html).17

125

http://www.xcalablemp.org/download.html

126 APPENDIX B. INTERFACE TO NUMERICAL LIBRARIES

B.2.1 xmp array gtol 1

[F] integer function xmp array gtol(d, dim, g idx, l idx)

type(xmp desc) d

integer dim

integer g idx

integer l idx

[C] void xmp array gtol(xmp desc t d, int dim, int g idx, int* l idx)

2

Synopsis 3

The xmp array gtol function translates a global index specified by g idx of a global array 4

specified by d into the corresponding index of its local section, and sets it to an array specified 5

by l idx. If the element of the specified index does not reside in the caller of the function, the 6

resulting array is set to an unspecified value. 7

Input Arguments 8

• d is a descriptor of the global array. 9

• dim is the target dimension of the global array. 10

• g idx is an index of the global array. 11

Output Argument 12

• l idx is an index of the local array. 13

B.2.2 xmp array lsize 14

Format 15

[F] integer function xmp array lsize(d, dim, lsize)

type(xmp desc) d

integer dim

integer lsize

[C] int xmp array lsize(xmp desc t d, int dim, int *lsize)

16

Synopsis 17

The xmp array lsize function provides the local size of each dimension of the target global 18

array. Note that the local size does not include the size of the shadow. 19

Input Arguments 20

• d is a descriptor of a global array. 21

• dim is the target dimension of the global array. 22

Output Argument 23

• lsize is the local size of the target dimension of the global array. 24

B.3. EXAMPLE 127

B.2.3 xmp array laddr1

Format2

[C] int xmp array laddr(xmp desc t d, void **laddr)3

Synopsis4

The xmp array laddr function provides the local address of the target global array.5

Input Arguments6

• d is a descriptor of a global array.7

Output Arguments8

• laddr is the local address of the target global array.9

B.2.4 xmp array lda10

Format11

[F] integer function xmp array lda(d, lda)

type(xmp desc) d

integer lda

[C] int xmp array lda(xmp desc t d, int* lda)

12

Synopsis13

The xmp array lda function provides the leading dimension of the two-dimensional global array.14

This function is used to call numerical libraries, such as BLAS.15

Input Argument16

• d is a descriptor of a global array, which must be a two-dimensional array.17

Output Argument18

• lda is a leading dimension of the target global array.19

B.3 Example20

This section shows the interface to ScaLAPACK as an example of the XcalableMP interface to21

numerical libraries.22

ScaLAPACK is a linear algebra library for distributed-memory. Communication processes23

in the ScaLAPACK routines depend on BLACS (Basic Linear Algebraic Communication Sub-24

programs). ScaLAPACK library routines invoked from XcalableMP procedures also depend on25

BLACS.26

Example 1 This example shows an implementation of the interface for the ScaLAPACK driver27

routine pdgesv.28

128 APPENDIX B. INTERFACE TO NUMERICAL LIBRARIES

XcalableMP Fortran
subroutine ixmp_pdgesv(n,nrhs,a,ia,ja,da,ipiv,b,ib,jb,db,ictxt,info)

use xmp_lib

5 integer n,nrhs,ia,ja,ib,jb,ictxt,info,desca(9),descb(9),ierr

double precision a,b

type(xmp_desc) da,db,dta,dtb

integer lbound_a1,ubound_a1,lbound_a2,ubound_a2

integer blocksize_a1,blocksize_a2,lead_dim_a

10 integer lbound_b1,ubound_b1,lbound_b2,ubound_b2

integer blocksize_b1,blocksize_b2,lead_dim_b

ierr=xmp_array_lbound(da,1,lbound_a1)

ierr=xmp_array_ubound(da,1,ubound_a1)

15 ierr=xmp_array_lbound(da,2,lbound_a2)

ierr=xmp_array_ubound(da,2,ubound_a2)

ierr=xmp_align_template(da,dta)

ierr=xmp_dist_blocksize(dta,1,blocksize_a1)

ierr=xmp_dist_blocksize(dta,2,blocksize_a2)

20 ierr=xmp_array_lead_dim(da,1,lead_dim_a)

ierr=xmp_array_lbound(db,1,lbound_b1)

ierr=xmp_array_ubound(db,1,ubound_b1)

ierr=xmp_array_lbound(db,2,lbound_b2)

25 ierr=xmp_array_ubound(db,2,ubound_b2)

ierr=xmp_align_template(db,dtb)

ierr=xmp_dist_blocksize(dtb,1,blocksize_b1)

ierr=xmp_dist_blocksize(dtb,2,blocksize_b2)

ierr=xmp_array_lead_dim(db,1,lead_dim_b)

30

desca(1)=1

desca(2)=ictxt

desca(3)=ubound_a1-lbound_a1+1

desca(4)=ubound_a2-lbound_a2+1

35 desca(5)=blocksize_a1

desca(6)=blocksize_a2

desca(7)=0

desca(8)=0

desca(9)=lead_dim_a

40

descb(1)=1

descb(2)=ictxt

descb(3)=ubound_b1-lbound_b1+1

descb(4)=ubound_b2-lbound_b2+1

45 descb(5)=blocksize_b1

descb(6)=blocksize_b2

descb(7)=0

descb(8)=0

descb(9)=lead_dim_b

B.3. EXAMPLE 129

50

call pdgesv(n,nhrs,a,ia,ja,desca,ipiv,b,ib,jb,descb,info)

return

end

55

Example 2 This example shows an XcalableMP procedure using the interface of Example 1.1

XcalableMP Fortran
program xmptdgesv

use xmp_lib

5 double precision a(1000,1000)

double precision b(1000)

integer ipiv(2*1000,2)

!$xmp nodes p(2,2)

!$xmp template t(1000,1000)

10 !$xmp template t1(2*1000,2)

!$xmp distribute t(block,block) onto p

!$xmp distribute t1(block,block) onto p

!$xmp align a(i,j) with t(i,j)

!$xmp align ipiv(i,j) with t1(i,j)

15 !$xmp align b(i) with t(i,*)

...

integer i,j,ictxt

integer m=1000,n=1000,nprow=2,npcol=2

integer icontxt=-1,iwhat=0

20 integer nrhs=1,ia=1,ja=1,ib=1,jb=1,info

character*1 order

...

order="C"

...

25 call blacs_get(icontxt,iwhat,ictxt)

call blacs_gridinit(ictxt,order,nprow,npcol)

...

!$xmp loop (i,j) on t(i,j)

do j=1,n

30 do i=1,m

a(i,j) = ...

end do

end do

...

35 !$xmp loop on t(i,*)

do i=1,m

b(i)= ...

end do

...

40 call ixmp_pdgesv(n,nrhs,a,ia,ja,xmp_desc_of(a),ipiv,

* b,ib,jb,xmp_desc_of(b),ictxt,info)

130 APPENDIX B. INTERFACE TO NUMERICAL LIBRARIES

...

call blacs_gridexit(ictxt)

...

45 stop

end

Appendix C1

Memory-layout Model2

In this chapter, the memory-layout model of global data in the Omni XcalableMP compiler3

(http://www.xcalablemp.org/download.html) is presented for reference.4

According to the XcalableMP specification, a global array is distributed onto a node array5

according to the data-mapping directives, and as a result, a node owns a set of elements.6

On each node, all and only the elements of the global array that it owns are gathered to form7

the local array having the same rank as the global. For each axis of the global data, all and only8

the indices that the node owns are packed to the axis of the local array so that the sequence9

can be maintained, with the shadow area, if any, added at the lower and/or upper bound of the10

axis.11

Eventually, the local array is stored in memory on each node according to the rule for storing12

arrays in the base language, that is, in row-major order in XMP/Fortran and in column-major13

order in XMP/C.14

Note that owing to the model above, the memory usage may be non-uniform among the15

nodes.16

Example17

XcalableMP Fortran
!$xmp nodes p(4,4)

!$xmp template t(64,64)

!$xmp distribute t(block,block) onto p

5 real a(64,64)

!$xmp align a(i,j) with t(i,j)

!$xmp shadow a(1,1)

The array a is distributed by a format of (block,block) onto a two-dimensional node array18

p, and each node owns a local array including a shadow area. Then, the local array is stored in19

memory on each node, as shown in Figure C.1.20

131

http://www.xcalablemp.org/download.html

132 APPENDIX C. MEMORY-LAYOUT MODEL

p(1,1)

p(2,1)

p(3,1)

p(4,1)

p(1,2)

p(2,2)

p(3,2)

p(4,2)

p(1,3)

p(2,3)

p(3,3)

p(4,3)

p(1,4)

p(2,4)

p(3,4)

p(4,4)

global array local array

p(2,4)

distribute allocate

memory

low

high

shadow

Figure C.1: Example of memory layout in the Omni XcalableMP compiler.

Appendix D1

XcalableMP I/O2

D.1 Categorization of I/O3

XcalableMP has three kinds of I/O.4

D.1.1 Local I/O5

Local I/O is a method that is employed to use I/O statements and standard I/O functions in6

the base languages, where I/O statements and functions are used without any directives.7

I/O statements (in XcalableMP Fortran) and I/O functions (in XcalableMP C) are executed8

locally similar to other execution statements. It depends on the system which nodes can handle9

the I/O statements and functions.10

Local I/O can read a file written by the base language, and vice versa.11

[F] The name of a global array in the I/O list describes the entire area of the array located12

in each node.13

An array element of a global array can be referred to as an I/O item only in the node where14

it is located.15

[F] No array section of a global array can be referred to as an I/O item.16

D.1.2 Master I/O[F]17

Master I/O is input and output for the file that corresponds to an executing node set. Master18

I/O is a collective execution.19

In master I/O, a global data object is input and output as if it was executed only by a master20

node, which represents the executing node set, through its local copy of the data.21

The master node is chosen by the system arbitrarily from among the executing node set,22

and is unique to the executing node set during execution of the program.23

Master I/O is provided in the form of directives of XcalableMP Fortran.24

A global array as an I/O item is accessed in the sequential order of array elements. When25

a local variable is read from a file, the value is copied to all nodes of the executing node set.26

When a local variable or an expression is written to a file, only the value of the data on the27

master node is written.28

Master I/O can read a file written in the base language, and vice versa.29

D.1.3 Global I/O30

Global I/O is input and output for a file that corresponds to an executing node set. Some31

executions of the global I/O are collective and the others are independent. In a large system with32

133

134 APPENDIX D. XCALABLEMP I/O

Table D.1: Global I/O.
independent/collective access method

Collective I/O collective sequential access

Atomic I/O independent sequential access

Direct I/O independent direct access

many nodes, the global I/O can be expected to have higher speed and less memory consumption 1

execution than master I/O. 2

[F] It is provided in the form of directives for some of I/O statements, such as OPEN, 3

CLOSE, READ, and WRITE statements. 4

[C] It is provided in the form of service functions and an include file. 5

Global I/O can handle only unformatted (binary) files. In XcalableMP Fortran, implied DO 6

loops and some specifiers cannot be used. In XcalableMP C, formatted I/O libraries, including 7

fprintf() and fscanf(), are not provided. 8

Global I/O can read a file written in MPI-IO, and vice versa. 9

[F] File formats are not compatible between XcalableMP Fortran and the base language 10

because global I/O does not generate or access file headers and footers that are specific to the 11

base language. 12

There are three kinds of global I/O, as shown in Table D.1. Collective global I/O is 13

for collective execution and sequential file access. It handles global data in a sequential order, 14

similar to master I/O. Atomic global I/O is for independent execution and sequential file access. 15

Executing nodes share file positioning of the global I/O file and execute each I/O statement and 16

library call mutually. Direct global I/O is for independent execution and direct file access. 17

Each executing node has its own file positioning and accesses a shared file independently. 18

Restriction 19

• The name of a global array may not be declared in a namelist group. That is, NAMELIST 20

I/O is not allowed for global arrays. 21

Advice to programmers 22

Local I/O is useful for debugging that is focused on a node because local I/O is executed on 23

each node individually. 24

Master I/O is a directive extension, where the execution result matches that of the base 25

language, ignoring directive lines. 26

Global I/O aims for highly parallel I/O using thousands of nodes. It is limited to binary 27

files, and it avoids the extreme concentration of computational load and memory consumption 28

to specific nodes using MPI-IO or other parallel I/O techniques. 29

D.2 File Connection 30

A file is connected to a unit in XcalableMP Fortran and to a file handler in XcalableMP C. 31

This operation is called file connection. Local I/O connects a file to each node independently. 32

Master I/O and global I/O connect a file to an executing node set collectively. 33

There are two ways of specifying file connections, dynamic connection and preconnection. 34

Dynamic connection connects a file during the execution of the program. Preconnection connects 35

a file at the beginning of execution of the program, and it can therefore execute I/O statements 36

D.3. MASTER I/O 135

and functions without the prior execution of an OPEN statement or a function call to open the1

file.2

D.2.1 File Connection in Local I/O3

The language processor of the base language connects the file to each node. It is implementation-4

defined which nodes can access the standard input, output, and error files. The behavior of the5

accesses to files having the same name on multiple nodes is also implementation-defined. The6

only primary node can access the standard input, output, and error files.7

D.2.2 [F] File Connection in Master I/O8

An OPEN statement that is specified with a master I/O directive connects a file to the executing9

node set. When a master I/O file is connected by a READ statement or a WRITE statement10

without encountering any OPEN statement, the name and attributes of the file depend on the11

language system of the base language. Disconnection from a master I/O file is executed by a12

CLOSE statement or by the termination of the program.13

The dynamic connection must be executed collectively by all nodes sharing the file with the14

same unit number. Two executing node sets may employ the same unit number only if they15

have no common node.16

The standard input, output, and error files are preconnected to the entire node set. There-17

fore, master I/O executed on the entire node set is always allowed without OPEN or CLOSE18

statements.19

D.2.3 File Connection in Global I/O20

The dynamic connection of global I/O is a collective execution, and is valid for the executing21

node set. Global I/O files cannot be preconnected.22

[F]23

An OPEN statement that is specified with a global I/O directive connects a file to the executing24

node set. Disconnection from a global I/O file is executed by a CLOSE statement or by the25

termination of the program.26

The dynamic connection must be executed collectively by all nodes sharing the file with the27

same unit number. Two executing node sets may employ the same unit number only if they28

have no common node.29

[C]30

A library function to open a global I/O file connects the file to the executing node set. Discon-31

nection from a global I/O file is executed by a library function to close the file or terminate the32

program.33

D.3 Master I/O34

A master I/O construct executes data transfer between a file and an executing node set via a35

master node of the executing node set. For a global array, the virtual sequential order of the36

array elements is visible.37

136 APPENDIX D. XCALABLEMP I/O

D.3.1 master io Construct 1

Syntax 2

[F] !$xmp master io

io-statement

[F] !$xmp master io begin
io-statement
...

!$xmp master io end

3

where io-statement is one of: 4

• OPEN statement 5

• CLOSE statement 6

• READ statement 7

• WRITE statement 8

• PRINT statement 9

• BACKSPACE statement 10

• ENDFILE statement 11

• REWIND statement 12

• INQUIRE statement 13

Restriction 14

• The following items, including a global array or a subobject of a global array, must not 15

appear in an input item or output item. 16

– A substring-range 17

– A section-subscript 18

– An expression including operators 19

– An io-implied-do-control 20

• An I/O statement specified with a master I/O directive must be executed collectively on 21

the node set that is connected to the file. 22

• Internal file I/O is not permitted to be a master I/O. 23

Description 24

An I/O statement that is specified with a master I/O directive accesses a file whose format is 25

the same as that of the base language. The access, including connection, disconnection, input 26

and output, file positioning, and inquiry, is collective, and must be executed on the same node 27

set as the one on which the file was connected. 28

A master node, which is a unique node to an executing node set, is chosen by the language 29

system. Master I/O works as if all file accesses were executed only on the master node. 30

The operations for I/O items are summarized in Table D.2. 31

D.4. [F] GLOBAL I/O 137

Table D.2: Operations for I/O.
I/O item operation

input item name of global array The data elements that are read from the file in
the sequential order of array elements are dis-
tributed onto the global array on the node set.
The file positioning increases according to the
size of data.

array element of global
array

The data element that is read from the file is
copied to the element of the global array on the
node to which it is mapped. The file positioning
increases according to the size of data.

local variable The data element that is read from the file is
replicated to the local variables on all nodes of
the executing node set. The file positioning in-
creases according to the size of data.

implied DO loop For each input item, repeat the above operation.

output item name of global array The data elements of the global array are col-
lected and are written to the file in the sequen-
tial order of array elements. The file positioning
increases according to the size of data.

array element of global
array

The element of the global array is written to
the file. A file position increases according to
the size of data.

local variable and ex-
pression

The value evaluated on the master node is writ-
ten to the file. The file positioning increases
according to the size of data.

implied DO loop For each output item, repeat the above opera-
tion.

Namelist input and output statements cannot treat global arrays. A namelist output state-1

ment writes the values on the master node to the file. In the namelist input, each item of the2

namelist is read from the file to the master node if it is recorded in the file. Then, all items of3

the namelist are replicated onto all nodes of the executing node set from the master node even4

if some items are not read from the file.5

IOSTAT and SIZE specifiers and specifiers of the INQUIRE statement that can return values6

always return the same value among the executing node set.7

When a condition that is specified by the ERR, END, or EOR specifier is satisfied, all nodes8

of the executing node set are branched together to the same statement.9

Advice to implementers10

It is recommended to provide such a compiler option that local I/O statements (specified without11

directives) are regarded as master I/O statements (specified with master io directives).12

D.4 [F] Global I/O13

Global I/O performs unformatted data transfer, and can be expected to have a higher perfor-14

mance and lower memory consumption than master I/O. The file format is compatible with the15

138 APPENDIX D. XCALABLEMP I/O

one in MPI-IO. 1

There are three kinds of Global I/O, namely collective I/O, atomic I/O, and direct I/O. 2

D.4.1 Global I/O File Operation 3

global io construct is defined as follows. 4

Syntax 5

[F] !$xmp global io [atomic / direct]
io-statement

[F] !$xmp global io [atomic / direct] begin
io-statement
...

!$xmp end global io

6

The first syntax is just a shorthand of the second syntax. 7

Restriction 8

I/O statements and specifiers that are available for an io-statement are shown in the following 9

table. The definition of each specifier is described in the specification of the base language. 10

Case of global io construct without a direct clause:

I/O statement available specifiers

OPEN UNIT, IOSTAT, FILE, STATUS, POSITION, ACTION, ACCESS, FORM

CLOSE UNIT, IOSTAT, STATUS

READ UNIT, IOSTAT

WRITE UNIT, IOSTAT

11

Case of global io construct with a direct clause:

I/O statement available specifiers

OPEN UNIT, IOSTAT, FILE, STATUS, RECL, ACTION, ACCESS, FORM

CLOSE UNIT, IOSTAT, STATUS

READ UNIT, REC, IOSTAT

WRITE UNIT, REC, IOSTAT

12

The input item and output item of a data transfer statement with a global io directive 13

must be the name of a variable. 14

Description 15

Global I/O construct connects, disconnects, inputs, and outputs the global I/O file, which is 16

compatible with MPI-IO. 17

The standard input, output, and error files cannot be a Global I/O file. A Global I/O file 18

cannot preconnect to any unit or any file handler, and must be explicitly connected by the 19

OPEN statement that is specified with a global io directive. 20

The OPEN statement that is specified with a global io directive is collective execution, and 21

the file is shared among the executing node set. A file that has already been opened by another 22

D.4. [F] GLOBAL I/O 139

OPEN statement with a global io directive cannot be reopened by an OPEN statement with1

or without a global io directive before closing it.2

A global I/O file must be disconnected explicitly by a CLOSE statement that is specified with3

a global io directive; otherwise, the result of I/O is not guaranteed. The CLOSE statement4

that is specified with a global io directive is a collective execution, and must be executed by5

the same executing node set as the one where the OPEN statement is executed.6

Utilizable values of the specifiers in I/O statements are shown in the following table. Defi-7

nitions of the specifiers are described in the specification of the base language.8

• OPEN statement9

specifiers value default

UNIT external file unit (scalar constant
expression)

not omissible

FILE file name (scalar CHARACTER
expression)

not omissible

STATUS ’OLD’, ’NEW’, ’REPLACE’ or
’UNKNOWN’

’UNKNOWN’

POSITION ’ASIS’, ’REWIND’ or ’AP-
PEND’

’ASIS’

ACTION ’READ’, ’WRITE’ or ’READ-
WRITE’

implementation-defined

RECL the value of the record length
(scalar constant expression)

not omissible

ACCESS ’SEQUENTIAL’ or ’DIRECT’ ’SEQUENTIAL’

FORM ’FORMATTED’ or ’UNFOR-
MATTED’

For direct access, UNFORMATTED. For
sequential access, this specifier shall not
be omitted.

POSITION is available only if the directive has no direct clause. RECL is available only10

if the directive has a direct clause. For direct I/O, the ACCESS specifier shall appear and11

the value shall be evaluated to DIRECT. For collective I/O and atomic I/O, the value of12

the ACCESS specifier shall be evaluated to SEQUENTIAL if this specifier appears. For13

collective I/O and atomic I/O, the FORM specifier shall appear and the value shall be14

evaluated to UNFORMATTED. For direct I/O, the value of the FORM specifier shall be15

evaluated to UNFORMATTED if this specifier appears.16

• CLOSE statement17

specifiers value default

UNIT external file unit (scalar constant expression) not omissible.

STATUS ’KEEP’ or ’DELETE’ ’KEEP’

• READ/WRITE statement18

REC is available only if the directive has a direct clause.19

• When a scalar variable of default INTEGER is specified to the IOSTAT specifier, it be-20

comes defined with an error code after execution.21

140 APPENDIX D. XCALABLEMP I/O

specifiers value default

UNIT external file unit (scalar constant expression) not omissible

REC the value of the number of record (scalar constant ex-
pression)

not omissible

OPEN, CLOSE, READ, and WRITE statements that are specified with global io direc- 1

tives without atomic or direct clauses are called collective OPEN, collective CLOSE, collective 2

READ, and collective WRITE statements, respectively. All of these statements are called col- 3

lective I/O statements. 4

OPEN, CLOSE, READ, and WRITE statements specified with global io directives having 5

atomic clauses are called atomic OPEN, atomic CLOSE, atomic READ, and atomic WRITE 6

statements, respectively. All of these statements are called atomic I/O statements. 7

OPEN, CLOSE, READ, and WRITE statements specified with global io directives with 8

direct clauses are called direct OPEN, direct CLOSE, direct READ, and direct WRITE state- 9

ments, respectively. All of these statements are called direct I/O statements. 10

The file connected by a collective, atomic, or direct OPEN statement can be read/written 11

only by the same type of READ/WRITE statements. The file can be disconnected by the same 12

type of CLOSE statement. Different types of global I/O cannot be executed together for the 13

same file or the same unit. For example, atomic I/O statements cannot be executed for the unit 14

connected by a collective OPEN statement. 15

D.4.1.1 file sync all Directive 16

Two data accesses cause a conflict if they access the same absolute byte displacements of the 17

same file, and at least one is a write access. When two accesses to the same file conflict in direct 18

or collective I/O, the following file sync all directive to the file must be executed. 19

Syntax 20

!$xmp file sync all([UNIT=]file-unit-number)
21

The file sync all directive is an execution directive and collective to the nodes connected to 22

the specified file-unit-number. The execution of a file sync all directive first synchronizes all the 23

nodes connected to the specified file-unit-number, and then causes all previous writes to the file 24

by the nodes to be transferred to the storage device. If some nodes have made updates to the 25

file, then all such updates become visible to subsequent reads of the file by the nodes. 26

D.4.2 Collective Global I/O Statement 27

Collective I/O statements read/write shared files and can handle global arrays. 28

All collective I/O statements execute collectively. In collective I/O, all accesses to a file, 29

such as connection, disconnection, input, and output, must be executed on the same executing 30

node set. 31

The operations for I/O items are summarized in the following table. 32

D.4.3 Atomic Global I/O Statement 33

Atomic I/O statements read/write shared files exclusively among executing nodes in arbitrary 34

order. Because it is a nondeterministic parallel execution, the results may differ every time it is 35

executed, even for the same program. 36

D.5. [C] GLOBAL I/O LIBRARY 141

I/O item operation

input
item

name of global array The values read from a file are assigned to the elements of
the global array. The file positioning increases according to
the size of the data.

local variable The values read from the file are replicated into the local
array on all executing nodes. The file positioning increases
according to the length of the data.

output
item

name of global array The values of a global array are written to the file in the
sequential order of the array elements. The file positioning
increases according to the size of the data.

local variable, expression The values evaluated on a node are arbitrarily selected by
the language processor from the executing node set. The file
positioning increases according to the size of the data.

Atomic OPEN and CLOSE statements are executed collectively, while atomic READ and1

WRITE statements are executed independently. A file connected by an atomic OPEN statement2

can be disconnected only by an atomic CLOSE statement executed on the same executing node3

set. Atomic READ and WRITE statements can be executed on any single node of the same4

executing node set.5

Atomic READ and WRITE statements are exclusively executed. The unit of exclusive6

operation is a single READ statement or a single WRITE statement.7

The initial file positioning is determined by the POSITION specifier of the atomic OPEN8

statement. Then, the file positioning seeks in every READ and WRITE statement according to9

the length of the input/output data.10

D.4.4 Direct Global I/O Statement11

Direct I/O statements read/write shared files by specifying the file positioning for each node.12

Direct OPEN and CLOSE statements are executed collectively, while direct READ and13

WRITE statements are executed independently. A file connected by a direct OPEN statement14

can be disconnected only by a direct CLOSE statement executed on the same executing node15

set. Direct READ and WRITE statements can be executed on any single node of the same16

executing node set.17

Direct READ and WRITE statements read/write local data at the file positioning specified18

by the REC specifier independently. The file positioning is shifted from the top of the file on19

the basis of the product of the specifiers RECL (of OPEN statement) and REC (of READ and20

WRITE statement).21

In order to guarantee the order of direct I/O statements to the same file position, the file22

should be closed or the file sync all directive should be executed between these statements.23

Otherwise, the outcome of multiple accesses to the same file position, in which at least one is a24

write access, is implementation-defined.25

D.5 [C] Global I/O Library26

XcalableMP C provides some data types defined in the include file “xmp.h”, a set of library27

functions with arguments of the data types, and built-in operators to get values of the data28

types from names of a variable, a template, etc.29

The following types are provided.30

142 APPENDIX D. XCALABLEMP I/O

• xmp file t : file handle 1

• xmp rang t : descriptor of array section 2

The following library functions are provided. Collective function names end with all. 3

• global I/O file operation 4

– xmp fopen all : file open 5

– xmp fclose all : file close 6

– xmp fseek : setting (individual) file pointer 7

– xmp fseek shared all : setting shared file pointer 8

– xmp ftell : displacement of (individual) file pointer 9

– xmp ftell shared : displacement of shared file pointer 10

– xmp file sync all : file synchronization 11

• collective I/O 12

– xmp file set view all : setting file view 13

– xmp file clear view all : initializing file view 14

– xmp fread all : collective read of local data 15

– xmp fwrite all : collective write of local data 16

– xmp fread darray all : collective read of global data 17

– xmp fwrite darray all : collective write of global data 18

• atomic I/O 19

– xmp fread shared : atomic read 20

– xmp fwrite shared : atomic write 21

• direct I/O 22

– xmp fread : direct read 23

– xmp fwrite : direct write 24

Data type 25

The following data types are defined in include file xmp io.h. 26

xmp file t A file handler. It is connected to a file when the file is opened. It has a shared file 27

pointer and an individual file pointer to point where data should be read/written in the 28

file. 29

A shared file pointer is a shared resource among all nodes of the node set that has opened 30

the file. Atomic I/O uses a shared file pointer. An (individual) file pointer is an individual 31

resource on each node. Collective I/O and direct I/O use individual file pointers. 32

These two file pointers are managed in the structure xmp file t, and can be controlled and 33

referenced only through the provided library functions. 34

xmp range t Descriptor of array section, including lower bound, upper bound, and stride 35

for each dimension. Functions for operating the descriptor are shown in the following 36

table. The xmp allocate range() function is used to allocate memory. The xmp set range() 37

function is used to set ranges of an array section. The xmp free range() function releases 38

the memory for the descriptor. 39

D.5. [C] GLOBAL I/O LIBRARY 143

function name xmp range t ∗xmp allocate range(n dim)

argument int n dim the number of dimensions

return value xmp range t∗ descriptor of array section. NULL is returned when a
program abends.

function name void xmp set range(rp, i dim, lb, length, step)

argument xmp range t ∗rp descriptor
int i dim target dimension

int lb lower bound of array section in the dimension i dim
int length length of array section in the dimension i dim
int step stride of array section in the dimension i dim

144 APPENDIX D. XCALABLEMP I/O

function name void xmp free range(rp)

argument xmp range t ∗rp descriptor of array section.

D.5.1 Global I/O File Operation 1

D.5.1.1 xmp fopen all 2

xmp fopen all opens a global I/O file. Collective execution. 3

function name xmp file t ∗xmp fopen all(fname, amode)

argument const char ∗fname file name
const char ∗amode equivalent to fopen of POSIX. combination of “rwa+”

return value xmp file t∗ file structure. NULL is returned when a program
abend.

File view is initialized, where file view is based on the MPI-IO file view mechanism. The 4

value of shared and individual file pointers depends on the value of amode. 5

amode intended purpose

r Open for reading only. File pointer points to the beginning of the file.

r+ Open an existing file for update (reading and writing). File pointer
points to the beginning of the file.

w Create for writing. If a file having that name already exists, it will be
overwritten. File pointer points to the beginning of the file.

w+ Create a new file for update (reading and writing). If a file having that
name already exists, it will be overwritten. File pointer points to the
beginning of the file.

a Append; open for writing at end-of-file or create for writing if the file
does not exist. File pointer points to the end of the file.

a+ Open for append; open (or create if the file does not exist) for update
at the end of the file. File pointer points to the beginning of the file.

D.5.1.2 xmp fclose all 6

xmp fclose all closes a global I/O file. Collective execution. 7

function name int ∗xmp fclose all(fh)

argument xmp file t ∗fh file structure

return value int 0: normal termination
1: abnormal termination. fh is NULL.
2: abnormal termination. error in
MPI File close.

D.5.1.3 xmp fseek 8

xmp fseek sets the individual file pointer in the file structure. Independent execution. 9

D.5. [C] GLOBAL I/O LIBRARY 145

function name int xmp fseek(fh, offset, whence)

argument xmp file t ∗fh file structure
long long offset displacement of current file view from po-

sition of whence
int whence choose file position

SEEK SET: the beginning of the file
SEEK CUR: current position
SEEK END: the end of the file

return value int 0: normal termination
an integer other than 0: abnormal termi-
nation

D.5.1.4 xmp fseek shared1

xmp fseek shared sets the shared file pointer in the file structure. Independent execution.2

function name int xmp fseek shared(fh, offset, whence)

argument xmp file t ∗fh file structure
long long offset displacement of current file view from position

of whence
int whence choose file position

SEEK SET: the beginning of the file
SEEK CUR: current position
SEEK END: the end of the file

return value int 0: normal termination
an integer other than 0: abnormal termination

D.5.1.5 xmp ftell3

xmp ftell returns the position of the individual file pointer in the file structure. Independent4

execution.5

function name long long xmp ftell(fh)

argument xmp file t ∗fh file structure

return value long long Upon successful completion, the function shall
open the file and return a non-negative integer
representing the lowest-numbered unused file de-
scriptor. Otherwise, a negative number shall be
returned.

D.5.1.6 xmp ftell shared6

xmp ftell shared returns the position of the shared file pointer in the file structure. Independent7

execution.8

146 APPENDIX D. XCALABLEMP I/O

function name long long xmp ftell shared(fh)

argument xmp file t ∗fh file structure

return value long long Upon successful completion, the function shall
open the file and return a non-negative integer
representing the lowest numbered unused file de-
scriptor. Otherwise, negative number shall be
returned.

D.5.1.7 xmp file sync all 1

xmp file sync all guarantees completion of access to the file from nodes sharing the file. Two 2

data accesses conflict if they access the same absolute byte displacements of the same file, and 3

at least one is a write access. When two accesses A1 and A2 to the same file conflict in direct or 4

collective I/O, an xmp file sync all to the file must be invoked between A1 and A2; otherwise, 5

the outcome of the accesses is undefined. Collective execution. 6

function name int xmp file sync all(fh)

argument xmp file t ∗fh file structure

return value int 0: normal termination
an integer other than 0: abnormal termination

D.5.2 Collective Global I/O Functions 7

Collective I/O is executed collectively, but using the individual pointer. It reads/writes data 8

from the position of the individual file pointer and moves the position forward by the length of 9

the data. 10

Before the file access, a file view is often specified. A file view, like a window to the file, 11

spans the positions corresponding to the array elements that are owned by each node. For more 12

details of file view, refer to the MPI 2.0 specification. 13

D.5.2.1 xmp file set view all 14

xmp file set view all sets a file view to the file. Collective execution. 15

function name int xmp file set view all(fh, disp, desc, rp)

argument xmp file t ∗fh file structure
long long disp displacement from the beginning of the

file.
xmp desc t desc descriptor
xmp range t ∗rp range descriptor

return value int 0: normal termination
an integer other than 0: abnormal termi-
nation

The file view of distributed desc limited to range rp is set into file structure fh. 16

D.5. [C] GLOBAL I/O LIBRARY 147

D.5.2.2 xmp file clear view all1

xmp file clear view all clears the file view. Collective execution.2

The positions of the shared and individual file pointers are set to disp, and the elemental3

data type and the file type are set to MPI BYTE.4

function name int xmp file clear view all(fh, disp)

argument xmp file t ∗fh file structure
long long disp displacement from the beginning of the file.

return value int 0: normal termination
an integer other than 0: abnormal termination

D.5.2.3 xmp fread all5

xmp fread all reads the same data from the position of the shared file pointer onto all of the6

executing nodes. Collective execution.7

function name ssize t xmp fread all(fh, buffer, size, count)

argument xmp file t ∗fh file structure
void ∗buffer beginning address of read variables
size t size the size of a read data element

size t count the number of read data elements

return value ssize t Upon successful completion, return the size of
read data. Otherwise, negative number shall be
returned.

D.5.2.4 xmp fwrite all8

xmp fwrite all writes individual data on all of the executing nodes to the position of the shared9

file pointer. Collective execution.10

It is assumed that the file view is set in advance. Each node writes its data into its own file11

view.12

function name ssize t xmp fwrite all(fh, buffer, size, count)

argument xmp file t ∗fh file structure
void ∗buffer beginning address of written variables
size t size the size of a written data element

size t count the number of written data elements

return value ssize t Upon successful completion, return the size of
written data. Otherwise, negative number shall
be returned.

D.5.2.5 xmp fread darray all13

xmp fread darray all reads data cooperatively to the global array from the position of the shared14

file pointer.15

Data is read from the file to distributed desc limited to range rp.16

148 APPENDIX D. XCALABLEMP I/O

function name ssize t xmp fread darray all(fh, desc, rp)

argument xmp file t ∗fh file structure
xmp desc t desc descriptor
xmp range t ∗rp range descriptor

return value ssize t Upon successful completion, return the size of
read data. Otherwise, negative number shall be
returned.

D.5.2.6 xmp fwrite darray all 1

xmp fwrite darray all writes data cooperatively from the global array to the position of the 2

shared file pointer. 3

function name ssize t xmp fwrite darray all(fh, desc, rp)

argument xmp file t ∗fh file structure
xmp desc t desc descriptor
xmp range t ∗rp range descriptor

return value ssize t Upon successful completion, return the size of
read data. Otherwise, negative number shall be
returned.

Data is written from distributed desc limited to range rp to the file. 4

D.5.3 Atomic Global I/O Functions 5

Atomic I/O is executed independently, but using the shared pointer. It exclusively reads/writes 6

local data from the position of the shared file pointer, and moves the position forward by the 7

length of the data. 8

Before atomic I/O is executed, the file view must be cleared. 9

[Rationale] 10

Although the file views must be the same on all processes in order to use the shared file 11

pointer, the xmp file set view all function may set different file views for all nodes. Thus, before 12

atomic I/O is used, the file view must be cleared. 13

D.5.3.1 xmp fread shared 14

xmp fread shared exclusively reads local data from the position of the shared file pointer, and 15

moves the position forward by the length of the data. Independent execution. 16

function name ssize t xmp fread shared(fh, buffer, size, count)

argument xmp file t ∗fh file structure
void ∗buffer beginning address of read variables
size t size the size of a read data element

size t count the number of read data elements

return value ssize t Upon successful completion, return the size of
read data. Otherwise, negative number shall be
returned.

D.5. [C] GLOBAL I/O LIBRARY 149

D.5.3.2 xmp fwrite shared1

xmp fwrite shared exclusively writes local data to the position of the shared file pointer and2

moves the position forward by the length of the data. Independent execution.3

function name ssize t xmp fwrite shared(fh, buffer, size, count)

argument xmp file t ∗fh file structure
void ∗buffer beginning address of written variables
size t size the size of a written data element

size t count the number of written data elements

return value ssize t Upon successful completion, return the size of
written data. Otherwise, negative number shall
be returned.

D.5.4 Direct Global I/O Functions4

Direct I/O is executed independently and uses the individual pointer. It individually reads/writes5

local data from the position of the individual file pointer, and moves the position forward by6

the length of the data, considering the file view.7

In order to guarantee the order by xmp fread and xmp fwrite functions to the same file8

position, the file should be closed or the xmp file sync all function should be executed between9

these functions. Otherwise, the outcome of multiple accesses to the same file position, in which10

at least one is the xmp fwrite function, is implementation dependent.11

Advice to programmers12

Function xmp fseek is useful for setting the individual file pointer. It is not recommended to13

use it together with the file view because of its complexity.14

D.5.4.1 xmp fread15

xmp fread reads data from the position of the individual file pointer and moves the position16

forward by the length of the data. Independent execution.17

function name ssize t xmp fread(fh, buffer, size, count)

argument xmp file t ∗fh file structure
void ∗buffer beginning address of read variables
size t size the size of a read data element

size t count the number of read data elements

return value ssize t Upon successful completion, return the size of
read data. Otherwise, negative number shall be
returned.

D.5.4.2 xmp fwrite18

xmp fwrite writes data to the position of the individual file pointer and moves the position19

forward jby the length of the data. Independent execution.20

150 APPENDIX D. XCALABLEMP I/O

function name ssize t xmp fwrite(fh, buffer, size, count)

argument xmp file t ∗fh file structure
void ∗buffer beginning address of written variables
size t size the size of a written data element

size t count the number of written data elements

return value ssize t Upon successful completion, return the size of
written data. Otherwise, negative number shall
be returned.

Appendix E1

Memory Consistency Model2

This chapter explains the memory consistency model that is adopted by XcalableMP.3

Memory consistency models have specified rules regarding multiple data accesses to memory.4

Because XcalableMP is an extension of the base languages, and its memory consistency model5

is defined as an extension to them, that is, XcalableMP follows all of the rules that are adopted6

by base languages.7

In addition, XcalableMP introduces some rules about global view. In global view, global8

communication constructs are used to access distributed data. Furthermore, distributed data9

can be accessed by designating data in local view. Conversely, non-distributed data can be10

accessed by designating distributed data using global communication constructs in global view.11

These are not considered under the memory consistency models of the base language because12

global view is a new concept that was introduced by XcalableMP.13

Please recall that global communication constructs are collective as described in Section 2.8.14

E.1 Execution Traces15

This section explains execution traces that are enabled by the Xcalable memory consistency16

model.17

First, instructions are defined as18

i : = xmp syn | xmp asyn(async-id) | wait async(async-id) | f stmt

where xmp syn denotes a global communication construct with no async clause, xmp asyn(async-id)19

denotes a global communication construct with the clause async(async-id), and f stmt is a20

statement.21

Next, operations are defined as22

o : = Fetchj i | Executej i | Reflectj i

where j is a positive integer.23

Operation Fetchj i denotes that instruction i is fetched j times. The integer j is incremented24

whenever a loop is exited. The instructions that are called multiple times in loops are identified25

by js. Operation Executej i denotes that instruction i is executed, while operation Reflectj i26

denotes that the effect of instruction i is saved to physical memories.27

Finally, the memory consistency model defines constraints written by a partial order ≤28

on operations as described below. Execution traces are defined as sequences of operations that29

follow the order. In the following, o1 < o2 denotes o1 ≤ o2 and o1 ̸≡ o2. In addition, o1 < o2 < o330

denotes o1 < o2 and o2 < o3.31

151

152 APPENDIX E. MEMORY CONSISTENCY MODEL

Fetchj1 i1 < Fetchj2 i2 implies Executej1 i1 < Executej2 i2 (i)

Executej1 xmp syn < Executej2 i2 implies Reflectj1 xmp syn < Executej2 i2 (ii)

Executej1 xmp asyn(async-id) < Executej3 wait async(async-id) < Executej2 i2 implies

Reflectj1 xmp asyn(async-id) < Executej2 i2 (iii)

Figure E.1: Constraints that are required by the XcalableMP memory consistency model.

E.1.1 Common Constraints 1

In this subsection, we explain some constraints that are common to both synchronous and 2

asynchronous communications. 3

In the XcalableMP memory consistency model, instructions are executed in the order in 4

which they are fetched. This is represented by i in Figure E.1. 5

E.1.2 Constraints for Synchronous Communications 6

The constructs reflect, gmove (and its subsequent assignment statement), reduction, and 7

bcast are synchronous if async is not specified. This means that executions of these constructs 8

guarantee the completion of data synchronization. That is, global communication constructs 9

read data that are written by previously executed statements, and their subsequent statements 10

and global communication constructs read data that are written by global communication con- 11

structs. This is given by ii in Figure E.1 12

For example, in the following code, the assignment statement g(:)=h(:) is guaranteed to 13

be completed before the second gmove construct is executed. Therefore, the value of g(i) must 14

be i when the assignment statement x(:)=g(6:10) is executed. 15

Finally, the value of x(i) on p(1) should be i+5. 16

XcalableMP Fortran
!$xmp nodes p(2)

!$xmp template t(10)

!$xmp distribute (block) onto p :: t

integer :: g(10), h(10)

5 !$xmp align (i) with t(i) :: g, h

integer x(5)

!$xmp loop on t(i)

do i=1,10

10 h(i)=i

end do

!$xmp gmove

g(:)=h(:)

15 !$xmp gmove

x(:)=g(6:10)

E.1.3 Constraints for Asynchronous Communications 17

The constructs reflect, gmove (and its following assignment statement), reduction, and bcast 18

are asynchronous if asyncs are specified. Completions of data read and written by these global 19

E.1. EXECUTION TRACES 153

communication constructs are not guaranteed until wait asyncs are executed. This is repre-1

sented by iii in Figure E.1.2

For example, in the following code, the assignment statement g(:)=h(:) may not be com-3

pleted before the second gmove construct is executed as the first gmove construct has async4

clause. Therefore, the value of g(i) is not guaranteed to be i+5. Of course, the value of x(i)5

on p(1) is not guaranteed to be i+5.6

XcalableMP Fortran
!$xmp nodes p(2)

!$xmp template t(10)

!$xmp distribute (block) onto p :: t

integer :: g(10), h(10)

5 !$xmp align (i) with t(i) :: g, h

integer x(5)

!$xmp loop on t(i)

do i=1,10

10 h(i)=i

end do

!$xmp gmove async(1)

g(:)=h(:)

15 !$xmp gmove

x(:)=g(6:10)

!$xmp wait_async(1)

The wait async(async-id) guarantees the completion of a global communication construct7

that has async-id. Therefore, the value of x(i) is not guaranteed to be i+5 in the following8

program:9

XcalableMP Fortran
!$xmp nodes p(2)

!$xmp template t(10)

!$xmp distribute (block) onto p :: t

integer :: g(10), h(10)

5 !$xmp align (i) with t(i) :: g, h

integer x(5)

!$xmp loop on t(i)

do i=1,10

10 h(i)=i

end do

!$xmp gmove async(1)

g(:)=h(:)

15 !$xmp wait_async(1)

!$xmp gmove

x(:)=g(6:10)

Assignment statements in local view and gmove constructs in global view may race. The10

value of x(5) is not guaranteed to be 6, and may be 10 in the following program:11

154 APPENDIX E. MEMORY CONSISTENCY MODEL

XcalableMP Fortran
!$xmp nodes p(2)

!$xmp template t(10)

!$xmp distribute (block) onto p :: t

integer :: g(10), h(10)

5 !$xmp align (i) with t(i) :: g, h

integer x(5)

integer l(5), m(5)

!$xmp local_alias l => g

10 !$xmp local_alias m => h

!$xmp loop on t(i)

do i=1,10

h(i)=i

15 end do

!$xmp gmove async(1)

g(:)=h(:)

l(5)=6

20 !$xmp wait_async(1)

x(5)=l(5)

By avoiding the race, the value of x(5) is guaranteed to be 6 as follows: 1

XcalableMP Fortran
!$xmp nodes p(2)

!$xmp template t(10)

!$xmp distribute (block) onto p :: t

integer :: g(10), h(10)

5 !$xmp align (i) with t(i) :: g, h

integer x(5)

integer l(5), m(5)

!$xmp local_alias l => g

!$xmp local_alias m => h

10

!$xmp loop on t(i)

do i=1,10

h(i)=i

end do

15

!$xmp gmove async(1)

g(:)=h(:)

!$xmp wait_async(1)

l(5)=6

20 x(5)=l(5)

Please note that function calls have no synchronization at its entrance/exit. In the following 2

program, the value of x(5) is not guaranteed to be 6: 3

XcalableMP Fortran
!$xmp nodes p(2)

!$xmp template t(10)

E.1. EXECUTION TRACES 155

!$xmp distribute (block) onto p :: t

integer :: g(10), h(10)

5 !$xmp align (i) with t(i) :: g, h

integer x(5)

integer l(5), m(5)

!$xmp local_alias l => g

!$xmp local_alias m => h

10

!$xmp loop on t(i)

do i=1,10

h(i)=i

end do

15

!$xmp gmove async(1)

call sub(g,h)

l(5)=6

!$xmp wait_async(1)

20 x(5)=l(5)

Appendix F1

DRAFT: Tasklet of upcoming2

XcalableMP 2.03

This chapter shows a draft of the specification of the tasklet features from upcoming XcalableMP4

2.0. The models and any other rules of XcalableMP 2.0 follows those of XcalableMP unless5

specified.6

F.1 XcalableMP Extended Execution Model7

When a node encounters a tasklets construct at runtime, a set of threads are created, an8

implicit tasklet for structured-block is generated on the node, and one of the threads begins9

execution of it.10

When a thread encounters a tasklet construct at runtime, a new tasklet is generated on the11

node. Execution of generated tasklets is assigned to one of the threads on the node, subject to12

the thread’s availability to execute work. Thus, execution of the new tasklet could be immediate,13

or deferred until later according to the tasklet scheduling constraint (Section F.3.2) and thread14

availability.15

At the end of the tasklets construct, there is an implicit taskletwait construct to complete16

all of the tasklets generated in the construct, after which the threads created at the beginning17

of the construct are terminated, and the node resumes the execution.18

F.2 Glossary19

F.2.1 Node Terminology20

node A logical entity managed by the XcalableMP runtime system, which21

has its own local memory and can communicate with each other, and22

on which one or more threads can execute inside the tasklets region.23

F.2.2 Thread Terminology24

thread An execution entity of tasklets, which execute on a node inside a25

tasklets region.26

F.2.3 Tasklet Terminology27

tasklet A specific instance of executable code and its data environment, gen-28

erated when a thread encounters a tasklet construct.29

157

158 APPENDIX F. DRAFT: TASKLET OF UPCOMING XCALABLEMP 2.0

tasklet
dependence An ordering relation between two sibling tasklets: the dependent 1

tasklet and a previously generated predecessor tasklet. The tasklet 2

dependence is fulfilled when the predecessor tasklet has completed. 3

dependent
tasklet A tasklet that because of a tasklet dependence cannot be executed 4

until its predecessor tasklets have completed. 5

predecessor
tasklet A tasklet that must complete before its dependent tasklets can be 6

executed. 7

F.3 Directives 8

F.3.1 Tasklet Constructs 9

F.3.1.1 tasklets Construct 10

Synopsis 11

The tasklets construct starts a region for tasklet execution. See Section ?? for a general 12

description of the XMP’s tasklet execution model. 13

Syntax 14

[F] !$xmp tasklets [on {nodes-ref | template-ref}]
structured-block
!$xmp end tasklets

[C] #pragma xmp tasklets [on {nodes-ref | template-ref}]
structured-block

15

Description 16

When a node encounters a tasklets construct at runtime, an implicit tasklet for structured-block 17

is created and a thread on the node begins execution of it. There is an implicit taskletwait 18

construct at the end of the tasklets construct. 19

In a tasklets region, only directives listed below can be specified. 20

• tasklet 21

• taskletyield 22

• taskletwait 23

• tasklet reflect 24

• tasklet gmove 25

• tasklet bcast 26

• tasklet reduction 27

• tasklet reduce_shadow 28

F.3. DIRECTIVES 159

Note that a tasklets region may not contain another tasklets construct, that is, tasklets1

cannot be nested.2

In addition, no OpenMP directives can be specified in a tasklets region.3

Restrictions4

• The tasklets construct is global, which means that it must be executed by all nodes in5

the current executing node set, and each local variable referenced in the construct must6

have the same value.7

• The node set specified by the on clause must be a subset of the executing node set.8

F.3.1.2 tasklet Construct9

Synopsis10

The tasklet construct defines a tasklet that will be executed by a specified node set.11

Syntax12

[F] !$xmp tasklet [on {nodes-ref | template-ref}] [depend-clause]...
structured-block
!$xmp end tasklet

[C] #pragma xmp tasklet [on {nodes-ref | template-ref}] [depend-clause]...
structured-block

13

where depend-clause is one of:14

in (variable [, variable]...)
out (variable [, variable]...)
inout (variable [, variable]...)

15

pro_post ({nodes-ref | template-ref} [, tag])
pro_wait [({nodes-ref | template-ref} [, tag])]
epi_post ({nodes-ref | template-ref} [, tag])
epi_wait [({nodes-ref | template-ref} [, tag])]

16

remote_in [(variable [, {nodes-ref | template-ref}] [, tag])]
remote_out [(variable [, {nodes-ref | template-ref}] [, tag])]
accept_remote_in (variable, {nodes-ref | template-ref} [, tag])
accept_remote_out (variable, {nodes-ref | template-ref} [, tag])

17

Description18

When a thread encounters a tasklet construct at runtime, it generates a tasklet from the code19

for the associated block and put the tasklet into the tasklet pool if it is included by the node20

set specified by the on clause; otherwise, it skips the block.21

If the on clause is omitted, it is assumed that the nodes that owns a variable selected by the22

implementation from the variables specified in the out clause, if any, is specified in it; otherwise23

it is assumed that the current executing node set is specified in it.24

The tasklet may have some scheduling constraints defined by depend-clause. The specifica-25

tion of each depend-clause is described in the following sections.26

160 APPENDIX F. DRAFT: TASKLET OF UPCOMING XCALABLEMP 2.0

Restrictions 1

• The node set specified by nodes-ref or template-ref in the on clause must be a subset of 2

the parent node set. 3

F.3.1.3 in/out/inout Clauses 4

Synopsis 5

The in, out, and inout clauses specify dependences of tasklets within a node. 6

Syntax 7

in (variable [, variable]...)
out (variable [, variable]...)
inout (variable [, variable]...)

8

Description 9

The in, out, and inout clauses work in the same way as the depend clause of the task directive 10

in OpenMP 4.0 or later, with regard to dependences of tasklets within a node. 11

The in clause. The generated tasklet will be a dependent tasklet of all previously generated 12

sibling tasklets that reference at least one of the list items in an out or inout clause. 13

The out and inout clauses. The generated tasklet will be a dependent tasklet of all pre- 14

viously generated sibling tasklets that reference at least one of the list items in an in, out, or 15

inout clause. 16

Restrictions 17

• variables used in these clauses of the same tasklet or sibling tasklets must indicate identical 18

storage locations or disjoint storage locations. 19

• variables cannot be zero-length array sections. 20

• A variable that is part of another variable (such as an element of a structure) but is not 21

an array element or an array section cannot appear in these clause. 22

F.3.1.4 pro post Clause 23

Synopsis 24

The pro_post clause, in combination with the pro_wait or epi_wait construct, specifies a 25

point-to-point synchronization between tasklets. 26

Syntax 27

pro_post ({nodes-ref | template-ref} [, tag]) 28

Description 29

This clause ensures that the predecessor tasklets have completed on the local node before tasklets 30

that have a matching pro_wait clause are scheduled, or tasklets that have a matching epi_wait 31

clause are completed on remote nodes. 32

A pro_post clause having the arguments of nodes-ref/template-ref and tag, of a tasklet on 33

a node (called a posting node) dynamically matches at most one pro_wait or epi_wait clause 34

F.3. DIRECTIVES 161

having the arguments of the posting node (unless omitted) and the same value as tag (unless1

omitted), of a tasklet on the node specified by nodes-ref/template-ref.2

Restrictions3

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in4

XcalableMP C.5

F.3.1.5 pro wait Clause6

Synopsis7

The pro_wait clause, in combination with the pro_post or epi_post clause, specifies a point-8

to-point synchronization between tasklets.9

Syntax10

pro_wait [({nodes-ref | template-ref} [, tag])]11

Description12

This clause prohibits the tasklet from being scheduled on the local node until tasklets that have13

a matching pro_post clause are scheduled, or tasklets that have a matching epi_post clause14

are completed on remote nodes.15

A pro_wait clause having the arguments of nodes-ref/template-ref and tag, of a tasklet on16

a node (called a waiting node) dynamically matches a pro_post clause having the arguments17

of the waiting node and the same value as tag, of a tasklet on the node specified by nodes-18

ref/template-ref.19

If tag is omitted, then the pro_wait construct can match a pro_post or epi_post clause20

having the arguments of the waiting node and any tag, of tasklet on the node specified by nodes-21

ref/template-ref. If both nodes-ref/template-ref and tag are omitted, then the pro_wait clause22

can match a pro_post or epi_post clause having the arguments of any node and any tag.23

Restrictions24

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in25

XcalableMP C.26

F.3.1.6 epi post Clause27

Synopsis28

The epi_post clause, in combination with the pro_wait or epi_wait construct, specifies a29

point-to-point synchronization between tasklets.30

Syntax31

epi_post ({nodes-ref | template-ref} [, tag])32

162 APPENDIX F. DRAFT: TASKLET OF UPCOMING XCALABLEMP 2.0

Description 1

This clause ensures that the tasklet have completed on the local node before tasklets that have 2

a matching pro_wait clause are scheduled, or tasklets that have a matching epi_wait clause 3

are completed on remote nodes. 4

A pro_post clause having the arguments of nodes-ref/template-ref and tag, of a tasklet on 5

a node (called a posting node) dynamically matches at most one pro_wait or epi_wait clause 6

having the arguments of the posting node (unless omitted) and the same value as tag (unless 7

omitted), of a tasklet on the node specified by nodes-ref/template-ref. 8

Restrictions 9

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in 10

XcalableMP C. 11

F.3.1.7 epi wait Clause 12

Synopsis 13

The epi_wait clause, in combination with the pro_post or epi_post clause, specifies a point- 14

to-point synchronization between tasklets. 15

Syntax 16

epi_wait [({nodes-ref | template-ref} [, tag])] 17

Description 18

This clause prohibits the tasklet from being completed on the local node until tasklets that have 19

a matching pro_post clause are scheduled, or tasklets that have a matching epi_post clause 20

are completed on remote nodes. 21

A pro_wait clause having the arguments of nodes-ref/template-ref and tag, of a tasklet on 22

a node (called a waiting node) dynamically matches a pro_post clause having the arguments 23

of the waiting node and the same value as tag, of a tasklet on the node specified by nodes- 24

ref/template-ref. 25

If tag is omitted, then the pro_wait construct can match a pro_post or epi_post clause 26

having the arguments of the waiting node and any tag, of tasklet on the node specified by nodes- 27

ref/template-ref. If both nodes-ref/template-ref and tag are omitted, then the pro_wait clause 28

can match a pro_post or epi_post clause having the arguments of any node and any tag. 29

Restrictions 30

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in 31

XcalableMP C. 32

F.3.1.8 remote in Clauses 33

Synopsis 34

The remote_in clause specifies a predecessor tasklet with regard to a data dependency derived 35

from a remote-read (get) operation. 36

F.3. DIRECTIVES 163

Syntax1

remote_in [({variable | *} [, {nodes-ref | template-ref}] [, tag])]2

Description3

A remote_in clause can be regarded as a syntactic sugar for the combination of in, pro_wait,4

and epi_post clauses.5

If * is specified as the first argument or all of the arguments are omitted, no in clause is6

implied.7

If the second argument is omitted, the implied pro_wait clause will match the first incoming8

pro_post or epi_post clause from a node and the implied epi_post will work as if the node9

was specified in it.10

Restrictions11

• variables used in these clauses of the same tasklet or sibling tasklets must indicate identical12

storage locations or disjoint storage locations.13

• variables cannot be zero-length array sections.14

• A variable that is part of another variable (such as an element of a structure) but is not15

an array element or an array section cannot appear in these clause.16

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in17

XcalableMP C.18

F.3.1.9 accept remote in Clause19

Synopsis20

The accept_remote_in clause specifies a dependent tasklet with regard to a data dependency21

derived from a remote-read (get) operation.22

Syntax23

accept_remote_in (variable, {nodes-ref | template-ref} [, tag])24

Description25

A accept_remote_in clause can be regarded as a syntactic sugar for the combination of in,26

pro_post, and epi_wait clauses.27

(Advice to implementers) The action for the implied epi_wait clause may be28

deferred until a dependent tasklet of the tasklet with respect to the the implied in29

clause is scheduled.30

Restrictions31

• variables used in these clauses of the same tasklet or sibling tasklets must indicate identical32

storage locations or disjoint storage locations.33

• variables cannot be zero-length array sections.34

164 APPENDIX F. DRAFT: TASKLET OF UPCOMING XCALABLEMP 2.0

• A variable that is part of another variable (such as an element of a structure) but is not 1

an array element or an array section cannot appear in these clause. 2

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in 3

XcalableMP C. 4

F.3.1.10 remote out Clause 5

Synopsis 6

The remote_out clause specifies a predecessor tasklet with regard to a data dependency derived 7

from a remote-write (put) operation. 8

Syntax 9

remote_out [({variable | *} [, {nodes-ref | template-ref}] [, tag])] 10

Description 11

A remote_out clause can be regarded as a syntactic sugar for the combination of out, pro wait, 12

and epi post clauses. 13

If * is specified as the first argument or all of the arguments are omitted, no in clause is 14

implied. 15

If the second argument is omitted, the implied pro_wait clause will match the first incoming 16

pro_post or epi_post clause from a node and the implied epi_post will work as if the node 17

was specified in it. 18

Restrictions 19

• variables used in these clauses of the same tasklet or sibling tasklets must indicate identical 20

storage locations or disjoint storage locations. 21

• variables cannot be zero-length array sections. 22

• A variable that is part of another variable (such as an element of a structure) but is not 23

an array element or an array section cannot appear in these clause. 24

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in 25

XcalableMP C. 26

F.3.1.11 accept remote out Clause 27

Synopsis 28

The accept_remote_out clause specifies a dependent tasklet with regard to a data dependency 29

derived from a remote-write (put) operation. 30

Syntax 31

accept_remote_out (variable, {nodes-ref | template-ref} [, tag]) 32

F.3. DIRECTIVES 165

Description1

A accept_remote_out clause can be regarded as a syntactic sugar for the combination of out,2

pro_post, and epi_wait clauses.3

(Advice to implementers) The action for the implied pro_post clause may be4

advanced after the scheduling constraint enforced by the implied out clause is met.5

Restrictions6

• variables used in these clauses of the same tasklet or sibling tasklets must indicate identical7

storage locations or disjoint storage locations.8

• variables cannot be zero-length array sections.9

• A variable that is part of another variable (such as an element of a structure) but is not10

an array element or an array section cannot appear in these clause.11

• tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in12

XcalableMP C.13

F.3.1.12 taskletyield Construct14

Synopsis15

The taskletyield construct specifies that the current tasklet can be suspended in favor of16

execution of a different tasklet.17

Syntax18

[F] !$xmp taskletyield

[C] #pragma xmp taskletyield

19

Description20

The taskletyield construct includes an explicit task scheduling point in the current tasklet.21

F.3.1.13 taskletwait Construct22

Synopsis23

The taskletwait construct specifies a wait on the completion of child tasklets of the current24

tasklet.25

Syntax26

[F] !$xmp taskletwait

[C] #pragma xmp taskletwait

27

Description28

The taskletwait construct includes an implicit task scheduling point in the current tasklet.29

The current tasklet is suspended at the tasklet scheduling point until all child tasks that it30

generated before the taskletwait construct complete execution.31

166 APPENDIX F. DRAFT: TASKLET OF UPCOMING XCALABLEMP 2.0

F.3.2 Tasklet Scheduling 1

Whenever a thread reaches a tasklet scheduling point, the implementation may cause it to per- 2

form a tasklet switch, beginning or resuming execution of a different tasklet. Tasklet scheduling 3

points are implied at the following locations: 4

• the point immediately following the generation of a tasklet 5

• the point of completion of a tasklet that has one or more implicit or explicit epi_wait 6

clauses 7

• after the point of completion of a tasklet 8

• at a taskletyield construct 9

• at an implicit and explicit taskletwait construct 10

When a thread encounters a tasklet scheduling point, it may do either of the following, 11

subject to the Tasklet Scheduling Constraints (below): 12

• begin execution of a tasklet 13

• resume any suspended tasklet 14

If more than one of the above choices is available, it is unspecified as to which will be chosen. 15

Tasklet Scheduling Constraints are as follows: 16

1. A dependent tasklet shall not be scheduled until its tasklet dependences are fulfilled. 17

2. A tasklet that has one or more implicit or explicit pro_wait clauses shall not be scheduled 18

until all of the pro_wait clauses are matched with pro_post or epi_post clauses. 19

F.3.3 Communication Tasklet Constructs 20

F.3.3.1 Overview 21

The communication tasklet constructs define inter-node interactions between tasklets on the 22

basis of XMP’s global-view communication constructs. 23

They are executed as a set of tasklets, each of which produces the same effect on a node as 24

the corresponding global-view communication construct does. 25

(Advice to implementers) To implement the above feature of the communication 26

tasklet constructs, they should be based on remote read (get) operations and point- 27

to-point synchronizations. 28

F.3.3.2 tasklet reflect Construct 29

Synopsis 30

The tasklet reflect construct defines tasklets that update the shadow area of a global array 31

like the reflect directive. 32

F.3. DIRECTIVES 167

Syntax1

[F] !$xmp tasklet reflect (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal]
[on {nodes-ref | template-ref}]

[C] #pragma xmp tasklet reflect (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal]
[on {nodes-ref | template-ref}]

2

Description3

The tasklet reflect construct generates a tasklet on each of the nodes specified by the on4

clause, which will produce the same effect as the reflect construct having the same clauses5

does. In addition, for each of the arrays specified by the sequence of array-names, an inout6

clause for it implicitly added to the generated tasklets.7

Note that tasklet reflect is a local construct, unlike reflect, and therefore the node set8

specified by the on clause need not include all of the nodes onto which the target arrays are9

mapped.10

Restrictions11

• The reflect width of each dimension specified by the reflect-width must not exceed the12

shadow width of the arrays.13

• The node set specified by the on clause must be a subset of the executing node set.14

Example15

F.3.3.3 tasklet gmove Construct16

Synopsis17

The tasklet gmove construct defines tasklets that copy the variable from the right-hand side18

(rhs) into the left-hand side (lhs) of the associated assignment statement like the gmove construct.19

Syntax20

[F] !$xmp tasklet gmove [on {nodes-ref | template-ref}]
[C] #pragma xmp tasklet gmove [on {nodes-ref | template-ref}]21

Description22

The tasklet gmove construct generates a tasklet on each of the nodes specified by the on23

clause, which will produce the same effect as the gmove construct having the same clauses does.24

In addition, for the variables on the right-hand and left-hand side of the associated assignment25

statement, in and out clauses are implicitly added to the generated tasklets, respectively,26

Note that tasklet gmove is a local construct, unlike gmove, and therefore the node set27

specified by the on clause need not include all of the nodes onto which global arrays appearing28

in the associated statement, if any, are mapped.29

Restrictions30

• The tasklet gmove construct must be followed by (i.e., associated with) a simple assign-31

ment statement that contains neither arithmetic operations nor function calls.32

168 APPENDIX F. DRAFT: TASKLET OF UPCOMING XCALABLEMP 2.0

• The node set specified by the on clause must be a subset of the executing node set. 1

F.3.3.4 tasklet bcast Construct 2

Synopsis 3

The tasklet bcast construct defines tasklets that perform broadcast communication from a 4

specified node like the bcast construct. 5

Syntax 6

[F] !$xmp tasklet bcast (variable [, variable]...) [from nodes-ref | template-ref]
[on nodes-ref] | template-ref]

[C] #pragma xmp tasklet bcast (variable [, variable]...) [from nodes-ref | template-ref]
[on nodes-ref | template-ref]

7

Description 8

The tasklet bcast construct generates a tasklet on each of the nodes specified by the on 9

clause, which will produce the same effect as the bcast construct having the same clauses does. 10

In addition, for each of the variables specified by the sequence of variables, an inout clause for 11

it implicitly added to the generated tasklets. 12

Note that tasklet bcast is a local construct, unlike bcast. 13

Restrictions 14

• The variables specified by the sequence of variables must either not be aligned or must be 15

replicated among nodes of the node set specified by the on clause. 16

• The node set specified by the on clause must be a subset of the executing node set. 17

• The source node specified by the from clause must belong to the node set specified by the 18

on clause. 19

• The source node specified by the from clause must be one node. 20

F.3.3.5 tasklet reduction Construct 21

Synopsis 22

The tasklet reduction construct defines tasklets that perform a reduction operation like the 23

reduction construct. 24

Syntax 25

[F] !$xmp tasklet reduction (reduction-kind : variable [, variable]...)
[on node-ref | template-ref]

[C] #pragma xmp tasklet reduction (reduction-kind : variable [, variable]...)
[on node-ref | template-ref]

26

F.3. DIRECTIVES 169

Description1

The tasklet reduction construct generates a tasklet on each of the nodes specified by the on2

clause, which will produce the same effect as the reduction construct having the same clauses3

does. In addition, for each of the variables specified by the sequence of variables, an inout4

clause for it implicitly added to the generated tasklets.5

Note that tasklet reduction is a local construct, unlike reduction.6

Restrictions7

• The variables specified by the sequence of variables must either not be aligned or must be8

replicated among nodes of the node set specified by the on clause.9

• The node set specified by the on clause must be a subset of the executing node set.10

F.3.3.6 tasklet reduce shadow Construct11

Synopsis12

The tasklet reduce_shadow construct defines tasklets that add values of shadow objects to13

their reflection source like the reduce_shadow construct.14

Syntax15

[F] !$xmp tasklet reduce shadow (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal]
[on {nodes-ref | template-ref}]

[C] #pragma xmp tasklet reduce shadow (array-name [, array-name]...)
[width (reflect-width [, reflect-width]...)] [orthogonal]
[on {nodes-ref | template-ref}]

16

Description17

The tasklet reduce_shadow construct generates a tasklet on each of the nodes specified by18

the on clause, which will produce the same effect as the reduce_shadow construct having the19

same clauses does. In addition, for each of the arrays specified by the sequence of array-names,20

an inout clause for it implicitly added to the generated tasklets.21

Note that tasklet reduce_shadow is a local construct, unlike reduce_shadow, and therefore22

the node set specified by the on clause need not include all of the nodes onto which the target23

arrays are mapped.24

Restrictions25

• The width of each dimension specified by reflect-width must not exceed the shadow width26

of the arrays.27

• The node set specified by the on clause must be a subset of the executing node set.28

Appendix G1

Sample Programs2

Example 13

XcalableMP C
/*

* A parallel explicit solver of Laplace equation in \XMP

*/

#pragma xmp nodes p(NPROCS)

5 #pragma xmp template t(1:N)

#pragma xmp distribute t(block) onto p

double u[XSIZE+2][YSIZE+2],

uu[XSIZE+2][YSIZE+2];

10 #pragma xmp align u[i][*] to t(i)

#pragma xmp align uu[i][*] to t(i)

#pragma xmp shadow uu[1:1][0:0]

lap_main()

15 {

int x,y,k;

double sum;

for(k = 0; k < NITER; k++){

/* old <- new */

20 #pragma xmp loop on t(x)

for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)

uu[x][y] = u[x][y];

#pragma xmp reflect (uu)

25 #pragma xmp loop on t(x)

for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y] +

uu[x][y-1] + uu[x][y+1])/4.0;

30 }

sum = 0.0;

#pragma xmp loop on t[x] reduction(+:sum)

for(x = 1; x <= XSIZE; x++)

35 for(y = 1; y <= YSIZE; y++)

171

172 APPENDIX G. SAMPLE PROGRAMS

sum += (uu[x][y]-u[x][y]);

#pragma xmp task on p(1)

printf("sum = %g\n",sum);

}

Example 2 1

XcalableMP C
/*

* Linpack in XcalableMP (Gaussian elimination with partial pivoting)

* 1D distribution version

*/

5 #pragma xmp nodes p(*)

#pragma xmp template t(0:LDA-1)

#pragma xmp distribute t(cyclic) onto p

double pvt_v[N]; // local

10

/* gaussian elimination with partial pivoting */

dgefa(double a[n][LDA],int lda, int n,int ipvt,int *info)

#pragma xmp align a[:][i] with t(i)

{

15 REAL t;

int idamax(),j,k,kp1,l,nm1,i;

REAL x_pvt;

nm1 = n - 1;

20 for (k = 0; k < nm1; k++) {

kp1 = k + 1;

/* find l = pivot index */

l = A_idamax(k,n-k,a[k]);

ipvt[k] = l;

25

/* if (a[k][l] != ZERO) */

#ifdef XMP

#pragma xmp gmove

pvt_v[k:n-k] = a[l][k:n-k];

30 #else

for(i = k; i < n; i++) pvt_v[i] = a[i][l];

#endif

/* interchange if necessary */

35 if (l != k){

#ifdef XMP

#pragm xmp gmove

a[l][:] = a[k][:];

#pramga xmp gmove

40 a[k][:] = pvt_v[:];

#else

for(i = k; i< n; i++) a[i][l] = a[i][k];

for(i = k; i< n; i++) a[i][k] = pvt_v[i];

173

#endif

45 }

/* compute multipliers */

t = -ONE/pvt_v[k];

A_dscal(k+1, n-(k+1),t,a[k]);

50 /* row elimination with column indexing */

for (j = kp1; j < n; j++) {

t = pvt_v[j];

A_daxpy(k+1,n-(k+1),t,a[k],a[j]);

}

55 }

ipvt[n-1] = n-1;

}

dgesl(double a[n][LDA],int lda,int n,int pvt[n],double b,int job)

60 #pragma xmp align a[:][i] with t(i)

#pragma xmp align b[i] with t(i)

{

REAL t;

int k,kb,l,nm1;

65

nm1 = n - 1;

/* job = 0 , solve a * x = b, first solve l*y = b */

for (k = 0; k < nm1; k++) {

l = ipvt[k];

70 #pragma xmp gmove

t = b[l];

if (l != k){

#pragma xmp gmove

b[l] = b[k];

75 #pragma xmp gmove

b[k] = t;

}

A_daxpy(k+1,n-(k+1),t,a[k],b);

}

80

/* now solve u*x = y */

for (kb = 0; kb < n; kb++) {

k = n - (kb + 1);

#pragma xmp task on t(k)

85 {

b[k] = b[k]/a[k][k];

t = -b[k];

}

#pragma xmp bcast (t) from t(k)

90 A_daxpy(0,k,t,a[k],b);

}

}

174 APPENDIX G. SAMPLE PROGRAMS

/*

95 * distributed array based routine

*/

A_daxpy(int b,int n,double da,double dx[n],double dy[n])

#pragma xmp align dx[i] with t(i)

#pragma xmp align dy[i] with t(i)

100 {

int i,ix,iy,m,mp1;

if(n <= 0) return;

if(da == ZERO) return;

/* code for both increments equal to 1 */

105 #pragma xmp loop on t(b+i)

for (i = 0;i < n; i++) {

dy[b+i] = dy[b+i] + da*dx[b+i];

}

}

110

int A_idamax(int b,int n,double dx[n])

#pragma xmp align dx[i] with t(i)

{

double dmax, g_dmax;

115 int i, ix, itemp;

if(n == 1) return(0);

/* code for increment equal to 1 */

itemp = 0;

120 dmax = 0.0;

#pragma xmp loop on t(i) reduction(lastmax:dmax/itemp/)

for (i = b; i < n; i++) {

if(fabs((double)dx[i]) > dmax) {

itemp = i;

125 dmax = fabs((double)dx[i]);

}

}

return (itemp);

}

130

A_dscal(int b,int n,double da,double dx[n])

#pragma xmp align dx[i] with t(i)

#pragma xmp align dy[i] with t(i)

{

135 int i;

if(n <= 0)return;

/* code for increment equal to 1 */

#pragma xmp loop on t(i)

140 for (i = b; i < n; i++)

dx[i] = da*dx[i];

}

Index

/periodic/ modifier, 49, 58
/unbound/ modifier, 40

address-of operator, 17
align, 29
align dummy variable, 29
align offset, 29
alignment, 12
allocation image set, 13
array, 47
array assignment in XMP/C, 16
array intrinsic functions, 109
array section in XMP/C, 15
async clause, 57
asynchronous communication, 13

barrier, 52
base language, 9
base program, 9
bcast, 55
block, 27
broadcast variables, 56
built-in elemental functions, 109
built-in functions of XMP/C, 17
built-in transformational procedures, 109

coarray reference, 72
collapse, 30
collective mode (of gmove), 50
combined directive, 21
communication, 12
construct, 10
current executing node set, 6, 11
cyclic, 27

data mapping, 10
declarative directive, 10
declarative directives, 19
dependent tasklet, 158
descriptor, 18
descriptor association, 82, 85
descriptor-of operator, 18, 93
Directive

align, 29

array, 47

async clause, 57

barrier, 52

bcast, 55

distribute, 26

gmove, 50

local alias, 73

lock, 78

loop, 38, 55

nodes, 22

post, 76, 77

reduce shadow, 57

reduction, 52

reflect, 48

shadow, 31

task, 35, 37

tasklet, 159

tasklets, 158

tasks, 35, 36

template, 24

unlock, 78

wait, 76, 77

wait async, 56

directive, 9, 19, 158

distribute, 26

distribution, 12

distribution format

*, 27

block, 27

cyclic, 27

gblock, 27

entire image set, 13

entire node array, 11

entire node set, 6, 11

Example

align, 31, 129

array, 47

array assignment in XMP/C, 17

array section in XMP/C, 16

async, 57

175

176 INDEX

coarray, 72
coarray reference, 72
distribute, 129
dynamic allocation in XMP/C, 17
end task, 35, 37
end tasks, 37
gmove, 51
library interface, 127
local alias, 75
loop, 41, 42, 129
memory-layout, 131
MPI interface, 120
node reference, 24
nodes, 23, 129
OpenMP in XcalableMP programs, 115
post, 77
procedure interface, 82, 87
reduce shadow, 58
reduction, 54
reflect, 49
shadow, 33, 49
task, 35, 37, 42
tasks, 37
template, 26, 129
template fix, 17, 34, 76
wait, 77
wait async, 57
xmp desc of, 17
xmp malloc, 17

executable directive, 10
executable directives, 19
executing image set, 13
executing node, 11
executing node array, 11
executing node set, 6, 11

full shadow, 32

gblock, 27
global, 10
global actual argument, 81
global communication constructs, 10
global construct, 10
global constructs, 6
global data, 6, 12
global dummy argument, 81
global-view model, 10
gmove, 50

image, 13
image index, 13

image set, 13
in mode (of gmove), 50
Intrinsic and Library Procedures

xmp all node num, 94
xmp all num nodes, 94
xmp array gtol, 126
xmp exit, 97
xmp malloc, 17, 97
xmp node num, 95
xmp num nodes, 95
xmp test async, 97
xmp wtick, 96
xmp wtime, 96
xmpc all node num, 94

intrinsic transformational procedures, 109

Laplace, 171
library interface, 125
Linpack, 172
local, 10
local actual argument, 81
local alias, 13
local data, 6, 12
local dummy argument, 81
local section, 12
local-view model, 10
local alias, 73
location-variable, 41
lock, 78
loop, 38, 55

node, 11, 157
node array, 11
node number, 11
node reference, 23, 24
node set, 11
nodes, 22

out mode (of gmove), 50

parent node set, 11
post, 76, 77
posting node, 76
predecessor tasklet, 158
procedure, 9
procedure interface, 81

reduce shadow, 57
reduction, 12
reduction, 52
reduction variable, 53
reflect, 48

INDEX 177

reflection source, 32

replicate, 30

replicated data, 12

replicated execution, 5

Sample Program

Laplace, 171

Linpack, 172

sequence association, 82

shadow, 12

shadow, 31

shadow object, 32

source node, 56

structured block, 9

synchronization, 13

Syntax

accept remote in, 163

accept remote out, 164

align, 29

array, 47

array assignment in XMP/C, 16

array section in XMP/C, 15

barrier, 52

bcast, 56

coarray, 71

coarray reference, 72

directive, 19

distribute, 26

epi wait, 161, 162

gmove, 50

in, 160

inout, 160

local alias, 73

lock, 78

loop, 38

node reference, 23

nodes, 22

out, 160

post, 76

pro post, 160

pro wait, 161

reduce shadow, 57

reduction, 53

reflect, 48

remote in, 163

remote out, 164

shadow, 31

task, 35

tasklet, 158, 159

tasklet bcast, 168

tasklet gmove, 167
tasklet reduce shadow, 169
tasklet reduction, 168
tasklet reflect, 167
taskletwait, 165
taskletyield, 165
tasks, 36
template, 25
template reference, 25
template fix, 33
wait, 77
wait async, 56

task, 7, 12
task, 35, 37
tasklet, 157
tasklet, 159
tasklet dependence, 158
tasklets, 158
tasks, 35, 36
template, 10
template, 24
template reference, 25
thread, 157

unlock, 78

variable, 12

wait, 76, 77
wait async, 56
waiting node, 77
work mapping, 10
work mapping constructs, 10

XcalableMP C, 9
XcalableMP Fortran, 9
xmp align axis, 105
xmp align offset, 105
xmp align replicated, 106
xmp align template, 106
xmp all node num, 94
xmp all num nodes, 94
xmp array gtol, 126
xmp array laddr, 127
xmp array lbound, 108
xmp array lshadow, 107
xmp array lsize, 126
xmp array ndims, 106
xmp array ubound, 108
xmp array ushadow, 107
xmp desc of, 18, 93

178 INDEX

xmp dist axis, 104
xmp dist blocksize, 103
xmp dist gblockmap, 103
xmp dist format, 102
xmp dist nodes, 104
xmp exit, 97
xmp finalize, 121
xmp finalize mpi, 120
xmp gather, 111
xmp get mpi comm, 119
xmp init, 121
xmp init mpi, 119
xmp malloc, 17, 97
xmp matmul, 112
xmp node num, 95
xmp nodes size, 99
xmp nodes attr, 99
xmp nodes equiv, 100
xmp nodes index, 98
xmp nodes ndims, 98
xmp num nodes, 95
xmp pack, 111
xmp scatter, 110
xmp sort down, 113
xmp sort up, 113
xmp template fixed, 100
xmp template lbound, 101
xmp template ndims, 101
xmp template ubound, 102
xmp test async, 97
xmp transpose, 112
xmp unpack, 112
xmp wtick, 96
xmp wtime, 96
xmpc all node num, 94

